
Reflection and Aspects meet again:
Runtime Reflective Mechanisms for Dynamic Aspects

Bencomo N., Blair G., Coulson G., Grace P., and Rashid A.
Lancaster University

Comp. Dep., InfoLab21,
Lancaster, UK, LA1 4WA

{nelly, gordon, geoff, gracep, marash}@comp.lancs.ac.uk

ABSTRACT
Distributed applications and middleware systems typically
involve language and system-wide heterogeneity e.g. different
platforms (PC, PDA, embedded devices, etc.). Dynamic
adaptation of distributed systems at run-time is a common
approach to deal with the resultant environmental conditions.
Dynamic aspects have been identified as a technique to address
this problem. In such kind of applications, advices cannot be
considered as a simple ‘piece of code’ as it might be in single-
language AOP approaches; instead advices should be realised in
different ways in distinct parts of the system depending upon the
platform, language, and dynamics of program execution. This
position paper discusses the use of a suit of orthogonal meta-level
models as the basis to provide different reflective implementation
mechanisms for supporting AOP approaches in a language and
platform independent fashion.

Categories and Subject Descriptors
D.2.10 [Software Engineering]: Software Architecture; D.2.11
[Software Engineering]: Design; D.4.7 [Operating Systems]:
Organization and Design – Distributed Systems, Hierarchical
design.

General Terms: Design

Keywords: AOP, Reflection, Reflective Architectures,
Middleware

1. INTRODUCTION
Dynamic adaptation of distributed systems at run-time is a
common approach to deal with changing environmental
conditions; for example as encountered by mobile applications as
they move from one location to another. Dynamic aspects have
been identified as one technique to address this problem, focusing
in particular on promoting separations of concerns (SOC); where
dynamic aspects involve plug and unplug of aspects without
stopping, and restarting a running system. Currently, majority of
implementations of Dynamic AOP are language dependent; for
example, Lasagne/J [20] is implemented in Java, and PROSE [10]

relies on manipulation of Java byte code. However, distributed
applications and middleware systems typically involve system
wide heterogeneity e.g. different platform (PC, PDA, embedded
devices, etc.) and language heterogeneity. Therefore, it is often
not feasible to realise an aspect as a ‘simple piece’ of code to be
always inserted in the same fashion; rather an advice must be
realised very differently in different parts of the system depending
upon platform, language and dynamics of program execution.
In this paper, we present an approach for language and platform
independent dynamic AOP based upon reflection. The approach is
based on the OpenCOM programming model. OpenCOM [6] is a
platform and language independent component model, developed
at Lancaster, which offers three meta-level models: interface,
interception, and architecture. We believe that these language
independent meta-level models (meta-models for short) are
naturally suited to the implementation of dynamic aspects. This
position paper discusses the use of this suit of orthogonal meta-
models as the basis for appropriate and different low level
implementation reflective mechanisms for supporting AOP
approaches in an open manner. In particular we focus on the use
of interception and architecture meta-models.

The paper is organized as follows. Section 2 gives a short
background about AOP, Reflection and the synergy between
them. Section 3 briefly presents an overview of the reflective
middleware at Lancaster. Section 4 discusses how the interception
and architecture meta-models are used to underpin dynamic AOP
capabilities. Some discussion about the challenges and issues is
presented. Finally, section 5 gives some final remarks and
outlines an agenda for future research.

2. SEPARATION OF CONCERNS WITH
REFLECTION AND AOP
Separation of concerns (SOC) can be applied at different stages of
the life cycle and different levels of abstraction. A number of
approaches have been proposed to achieve separation of concerns
[16]. Computational reflection [9][18] and aspect-oriented
programming (AOP) [7] are examples of such approaches. The
main purpose of reflection is to maintain an architectural
separation of concerns between the base level and the meta-level.
So called meta-object protocols (MOPs) define interfaces to this
meta-level. Experiments with reflection had shown that structured
organization of the meta-level brings benefits in terms of
modularity and extensibility [2][8][17][24]. In the specific case
of AOP, it is employed to separate any cross-cutting concerns.
AOP introduces a unit of modularization -called aspect- that
crosscuts other modules. The implementation of crosscutting

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
RM '05, November 28- December 2, 2005 Grenoble, France Copyright
2005 ACM 1-59593-270-4/05/11... $5.00.

concerns is captured in aspects instead of mingling them with the
rest of the modules. Figure 1 shows the dimensions of concerns
separated by reflection and AOP. While reflection separates the
base computation at the so-called base-level and meta-
computations (computations about computation) at the meta-level,
AOP separates any crosscutting concerns or aspects.

Figure 1. Dimensions of concerns separated by reflection and

AOP:
In the specific case of middleware platforms, reflection has been
used to provide a greater degree of configurability and dynamic
adaptability at the middleware level. While the base-level consists
of the implementation of the usual middleware services, the meta-
level comprises reflective facilities to expose such
implementation, enabling inspection and adaptation.

Middleware development includes a range of concerns that should
be integrated, as transparently as possible. System wide concerns
such as persistence, security, resource localization and
synchronisation, are essentially of a crosscutting nature and,
therefore, become entangled in the system, thus decreasing
understandability and potential for reuse. All this, makes the
development of middleware platforms even more complicated.
Because of their capability to separate concerns, AOP has been
accepted as a promising technique for middleware developments.
AOP offers a useful abstraction principle to structure the base and
meta-level of the middleware. This position paper is in the context
of taking the advantages of both worlds, reflection and AOP, to
separate concerns in the development of middleware platforms
that can be adaptable and re-configurable at run-time.

3. REFLECTIVE MIDDLEWARE USING
META-MODELS
The reflective middleware research [21] carried out at Lancaster
University is based on three key concepts: components,
components frameworks and reflection. At Lancaster both the
middleware platform and the application are built from
interconnected sets of components. The underlying component
model is based on OpenCOM [4], a general-purpose and
language-independent component-based systems building
technology. Figure 2 shows the main concepts of the OpenCOM
architecture: components, interfaces, receptacles, bindings and
capsules (containers). OpenCOM supports the construction of
dynamic systems that may require run-time reconfiguration. It is
straightforwardly deployable in a wide range of deployment
environments ranging from standard PCs, resource-poor PDAs,
embedded systems with no OS support, and high speed network
processors. Components are complemented by the coarser-grained

notion of component frameworks (CFs) [19]. A CF is a set of
components that cooperate to address a required functionality or
structure (e.g. Discovery and Advertising, Security, Interactions,
etc). CFs also accept additional ‘plug-in’ components that change
and extend behaviour. Many interpretations of the CF notion
foresee only design-time or build-time plugability. In our
interpretation run-time plugability is also included, and CFs
actively police attempts to plug in new components according to
well-defined, per-CF, policies and constraints.

Figure 2. The OpenCOM main concepts

Reflection is used to support introspection and adaptation of the
underlying component/ CF structures [2]. A pillar of our approach
to reflection is to provide an extensible suite of orthogonal meta-
models each of which is optional and can be dynamically loaded
when required, and unloaded when no longer required. The fact
that they are optional makes them to be called reflective
extensions. The motivation of this approach is to provide a
separation of concerns to reduce the complexity of the overall
metalevel. This approach was first advocated by the designers of
AL-1/D [11]. Three reflective meta-models are now supported
(Architecture, Interface, and Interception); see Figure 3. These
meta-models are explained below.

Architecture, Interface, and Interception meta-models
provide a separation of concerns to reduce the complexity of
the overall metalevel.

Figure 3. The meta-space structure:
The architecture meta-model represents the current topology of a
composition of components within a capsule; it is used to inspect
(discover), adapt and extend a set of components. For example,
we might want to change or insert a compression component to
operate efficiently over a wireless link. This meta-model provides
access to the implementation of the meta-component that has a
component graph where components are nodes and bindings are

meta
level

base
level

 aspect1 aspect2 . . . aspectn

Base
Level

Meta
Level

Reflective meta-models (extensions)
Architecture Interface Interception

arcs. Inspection is achieved by traversing the graph, and
adaptation/extension is realized by inserting or removing nodes or
arcs.

The interface meta-model supports the dynamic discovery of the
set of interfaces defined on a component; support is also provided
for the dynamic invocation of methods defined on these interfaces
[2]. Both capabilities enable the invocation of inter-faces whose
types were unknown at design time.

The Interception meta-model supports the dynamic interception of
incoming method calls on interfaces and also the association of
pre- and post-method-call code [2]. The code elements that are
interposed are called interceptors. For example, in the above
wireless link scenario we might want to use an interceptor to
monitor the conditions under which the compressor should be
switched.

4. DIFFERENT RUN-TIME REFLECTIVE
MECHANISMS FOR DYNAMIC AOP
Dynamic Aspect-Oriented Programming promotes the same
benefits as AOP, but the aspects are woven at run-time rather than
compile time [5]. This technique, although not labelled as
reflective, complements reflection in nature. AOP provides a
series of techniques to enable the programmer to reason at a
higher level about issues that cross-cut the structure of a system,
allowing such concerns to be adapted to suit the current context.

A number of dynamic AOP techniques, e.g.,
[12][13][14][15][21][22] have employed reflection as a basis for
supporting dynamic aspects via interception or byte code
rewriting. The goal in these cases, however, has been to use
reflection and existing meta-object protocols as a tool to support
dynamic aspects. We advocate for the use of the meta-level
partitioned into several orthogonal meta-level models (or meta-
models) to make it possible to realize aspects using different
techniques or approaches in different modules of the system. This
section discusses about how the interception and architecture
meta-models are used in this context.

4.1 INTERCEPTION META-MODEL AS A
REFLECTIVE MECHANISM FOR AOP
The interception meta-model described above provides a meta-
model of the process of invoking an arbitrary operation in a
component’s interface. This is done by providing the ability to
interpose interceptors in bindings. A meta-interface is provided
that allows the meta-programmer to interpose arbitrary code
elements called interceptors at interfaces, such that an interceptor
is executed whenever one of the interface’s operations is invoked
[6]. The interceptor may be executed either before, after, or both
before and after, the operation invocation.

Our realization of the meta-model provides both interception-
capable and non-interception-capable bindings according the
requirements – i.e. we choose an interception-capable binding if
we are likely to need interception capabilities. Moreover, bindings
can be broken and rebound in case we have made a wrong choice.
Alternative implementations of interception are offered presenting
different trade-offs.

Figure 4 shows an example of a binding component between the
two components C1 and C2. Component C2 offers its services to
C1. The binding offers an interface to allow dynamic
introspection and to plug interceptors.

Figure 4. Binding Component between components C1 and C2

offering interception capabilities through its interface

Interceptors as Advices: The (in) famous tracing aspect again
The Tracing aspect is a passive aspect that monitors calls to, and
returns from, methods being traced within an application and
displays this information in some way. This aspect is passive in
that its occurrence within an application does not affect the rest of
the application's behaviour; the tracing aspect uses the before and
after forms of advice.
In the context of the interception meta-model, interceptors can be
seen as advices. Let’s study the following case: suppose
component C2 of Figure 4 has an interface with a method called
MethodB and an interceptor is going to be (pre) added using the
interception capabilities offered by the binding. The interceptor
will be used as a tracing aspect that will log the entry of the
MethodB. During the setting phase, the monitor (meta-program)
requests the loading of the interceptor. The Kernel loads the
interceptor PreMethodB and the interceptor is added to the
binding. During the call phase, when C1 calls methodB in C2 the
interceptor is executed before the operation invocation.

Figure 5 shows the sequence diagram associated with the
interception process. This process has two phases, the phase
setting where the PreMethodB is going to be created (if it does
not exist yet) and loaded into the capsule (container). The phase
call consists of the call and therefore interception of the method to
be traced, in this case the methodB in the component C2. A
similar process can be applied in the case of a post interceptor
(when the method tracing logs the exit of the method), or several
interceptors are inserted.

While tracing is passive, the around form of advice is more
intrusive. In the example of the tracing aspect above, the
interceptor PreMethodB was simply executed as additional code
before the advised operation. No changes were done when calling
methodB. Given the fact that the interception meta-model
provides capabilities to manipulate the parameters of the calls,
additional execution before and/or after the join point can be done
when modifying the arguments of the call. In this case we would
be using the around style of advice. The sequence diagram for this
case is very similar to the one shown in Figure 5.

During the setting phase, the monitor (meta-program) requests the loading of the interceptor. The
Kernel loads the interceptor PreMethodB and the interceptor is added to the binding. During the
call phase, when C1 calls methodB in C2 the interceptor is executed before the operation
invocation.

Figure 5. Sequence diagram of the (pre) interception of MethodB of component C1

Matching the AOP and interception meta-model vocabularies we
observe that the term advice coincides with the term interceptor
and an interception point in the binding component matches a
joint point. The interceptor may be executed either, before, or
after, or both before and after, the operation invocation. The case
of around advice is considered under the context of the
architecture meta-model and is explained in the next section. An
aspect in this context can be defined as a collection of interceptors
and the mechanism to specify the join points (interception points)
where the advices (interceptors) operate.

4.2 ARCHITECTURE META-MODEL AS A
REFLECTIVE MECHANISM FOR AOP

As we stated before, the case of around advice is more
intrusive than the cases of before/after advice. Some typical uses
of this advice include when you might want to bypass the
execution of the captured join point, execute it with different
argument, execute it several times, and/or perform additional
execution before and after the join point. It might end changing
the structure of the application by the introduction of new
components. In the next section we investigate the case where the

original execution is bypassed and some other logic is performed
in its place. The basic idea is to replace at run-time the component
that offers the implementation of the behaviour to be bypassed
with a new component that will offer the new required behaviour.

The around advice: an example using the architecture meta-
model
The architecture meta-model provides adaptation capabilities
allowing insertion (and removal) of components, i.e.
insertion/removal of nodes or arcs in the graph of the meta-model.
In this context, advices can be weaved by introducing new
components into the graph offering a form of an around advice.
Let’s study the following case. Suppose component C2 has an
interface with a method called foo, C1 uses this interface. It
means that a binding exists between C1 and C2. A new
component C3 offering another implementation of the operation
foo will be inserted. C1 will be connected to C3 instead of C2
using a new binding. The operation foo in C3 will be the new
advice introduced instead of the foo implementation offered by
C2. Figure 6 shows the sequence diagram associated with the
insertion of the advice.

During the setting phase, the monitor (meta-program) requests the creation of the component C3,
the disconnection of C2 and C1, and the connection of C3 and C1. The meta-architecture
component will destroy the old binding between C2 and C1 and will create a new binding between
C3 and C1. When required during call phase, the new binding will call the operation foo on C3.

Figure 6. Sequence diagram of the insertion of an around advice using the Architecture meta-model

Matching the AOP and architecture meta-model vocabularies we
find that advices coincide with a set of different operations in
components, and a joint point matches the interface binding in the
binding component (where operations in component are called).
Aspects, in this meta-model are defined as a collection of
components (with their implementations of operations) and the
mechanism to specify the join points (inside the bindings) where
the advices (in the form of operations) are triggered.

4.3 DISCUSSION
The examples presented in the previous sections have shown that
the conjunction of reflection and dynamic AOP in our approach
offer potential solutions for providing principled adaptation of
middleware platforms in heterogeneous environments. We are
now investigating how to combine the interception and
architecture meta-model to implement other cases associated with
the around advice.

The partial results show how different aspects can be treated in
different ways using the meta-models. At runtime when
components exchange messages, messages can be intercepted and
additional processing can be realized before and after message
delivery. As in the example of the tracing aspect given above,
advices as interceptors can be used to monitor and check certain
quality attributes at run-time.

Security policies and procedures at various points in the base
level code can be modified at run-time to reflect the current
operating environment, e.g. type of network [5]. Enforced
dynamic security policies can be tailored using different
implementations of operations of interfaces offered by distinct

components. Using the architecture meta-model, advices can take
the form of components and their operations (implementations).

5. SUMMARY AND FUTURE WORK
In this position paper we advocate for providing different
reflective mechanisms (based on different orthogonal meta-
models) as implementation of AOP. This gives us the ability to
realize advice very differently in several parts of the system
depending on the language, platform and dynamics of execution.
This will result in a more flexible middleware platform that can
be adapted to face the high levels of configurability and dynamic
adaptability. So far, we have studied how the architecture and
interception meta-models can be used to achieve our goal. More
work has to be done in relation to the interface meta-model and
how to use the meta-models together.

Reflection is often criticised of being an expensive solution,
which incurs overhead in terms of system performance because of
the storage and management of meta-information. Hence, we will
thoroughly evaluate the efficiency of our implementation of
dynamic aspects. This evaluation aims to demonstrate that the
overhead of our reflective approach to dynamic aspects is
minimised. For this purpose, we will compare the performance of
our flexible approach to other dynamic aspects implementations
for a set of specific aspects case studies. We foresee, based upon
our previous experience of reflective solutions [5], that given the
trade-off between flexibility and performance, it is possible to
produce high performance, flexible systems.

Finally, we believe that an interesting and important area of future
research is the ability to interpret pointcut expressions at run-time

to dynamically change advice introductions. That is, we aim to
develop a language-independent pointcut language to reason and
make changes to aspects in systems in the same way we reason
about components. This will allow us to specify pointcuts which
pick the desired join points at runtime.

6. ACKNOWLEDGMENTS
This research is part-financed by the AOSD-Europe and

RUNES projects. These projects are supported by research
funding from the European Network of Excellence on Aspect-
Oriented Software Development under contract number. T IST-2-
004349 and the European Commission's 6th framework
Programme under contract number IST-004536 respectively.

7. REFERENCES
[1] Blair G., Blair. L., Rashid A. Moreira A., Araújo J.,

Chitchyan R. Aspect-Oriented Software Development,
chapter 17 - Engineering Aspect-Oriented Systems, pages
379-406. Addison-Wesley, 2005

[2] Blair, G., Coulson, G., Grace, P.: Research Directions in
Reflective Middleware: the Lancaster Experience, Proc. 3rd
Workshop on Reflective and Adaptive Middleware
(RM2004), Canada, (2004), 262-267.

[3] Costa, F. Combining meta-information management and
refection in an architecture for configurable and
reconfigurable middleware. Ph.D. Dissertation, University of
Lancaster, 2001

[4] Coulson, G., Blair, G.S., Grace, P., Joolia, A., Lee, K.,
Ueyama, J. A Component Model for Building Systems
Software, Proceeding of IASTED Software Engineering and
Applications (SEA’04), USA, 2004

[5] Coulson G., Blair G., and Grace P., On the Performance of
Reflective Systems Software, In Proc. of International
Workshop on Middleware Performance, USA, 2004

[6] Grace P., Blair G., Reflective Middleware, Chapter in
book:Mobile Middleware, ed: P. Bellavista and A. Corradi,
CRC Press (To be published)

[7] Kiczales G. Aspect Oriented Programming, ACM
Computing Surveys (CSUR), vol. 28, no. 4, 1996

[8] Kon F., Costa F., Blair G., Campbell R. The case for
reflective middleware. Commun. ACM 45(6): 33-38 (2002)

[9] Maes, P.: Concepts and Experiments in Computational
Reflection, Proc. OOPSLA'87, Vol. 22 of ACM SIGPLAN
Notices, pp147-155, ACM Press, 1987

[10] Nicoara A., Alonso G.: Dynamic AOP with PROSE, Proc. of
International Workshop on Adaptive and Self-Managing
Enterprise Applications (ASMEA'05) in CAISE'05, Portugal,
(2005)

[11] Okamura H., Ishikawa Y. and Takoro M., AL-1/D: A
Distributed Programming System with multi-Model
Reflection Framework, Proc. Int. Workshop on reflection and
Meta-level Architecures, Japan, 1992, 36-47

[12] Pawlak R., Seinturier L., Duchien L., and Florin G., JAC: A
Flexible Solution for Aspect-Oriented Programming in Java,
3rd International Conference on Meta-Level Architectures
and Separation of Concerns (Reflection), 2001, Springer-
Verlag, Lecture Notes in Computer Science, 2192, pp. 1-25.

[13] Popovici A., Alonso G., and Gross T., Just-In-Time Aspects:
Efficient Dynamic Weaving for Java, 2nd International
Conference on Aspect-Oriented Software Development
(AOSD), 2003, ACM, pp. 100-109.

[14] Popovici A., Frei A., and Alonso G., A Proactive
Middleware Platform for Mobile Computing,
ACM/IFIP/USENIX International Middleware Conference,
2003, Springer-Verlag, Lecture Notes in Computer Science,
2672, pp. 455-473.

[15] Popovici A., Gross T, and Alonso G, Dynamic Weaving for
Aspect-Oriented Programming, 1st International Conference
on Aspect-Oriented Software Development (AOSD-2002),
2002, ACM, pp. 141-147

[16] Rashid, A. A Hybrid Approach to Separation of Concerns:
The Story of SADES. 3rd International Conference on Meta-
Level Architectures and Separation of Concerns (Reflection).
Springer-Verlag Lecture Notes in Computer Science.
Volume 2192, 2001, 231-249

[17] Rodriguez L., Tanter E., Noye J. Supporting Dynamic
Crosscutting with Partial Behavioral Reflection: A Case
Study, sccc,. 48-58, XXIV 2004, 48-58

[18] Smith B.: Reflection and Semantics in a Procedural
Language, PhD thesis, MIT Laboratory of Computer
Science, 1982

[19] Szyperski C.: Component Software: Beyond Object-Oriented
Programming, Addison-Wesley, (2002)

[20] E. Truyen, Dynamic and Context-Sensitive Composition in
Distributed Systems, PhD thesis, K.U.Leuven, Belgium,
(2004)

[21] AspectS Home Page, http://www.prakinf.tu-
ilmenau.de/~hirsch/Projects/Squeak/AspectS/, 2005.

[22] AspectWerkz Team, "AspectWerkz Project",
http://aspectwerkz.codehaus.org/, 2005

[23] Middleware at Lancaster
http://www.comp.lancs.ac.uk/computing/research/mpg/reflec
tion/index.php

[24] The JBoss Project: http://www.jboss.org/index.html.

