
Dynamically Adaptive Systems are Product Lines too: Using Model-Driven
Techniques to Capture Dynamic Variability of Adaptive Systems∗

Nelly Bencomo, Pete Sawyer, Gordon Blair, Paul Grace
Computing department, InfoLab21, Lancaster University, LA1 4WA, United Kingdom

email: {nelly, sawyer, gordon, gracep}@comp.lancs.ac.uk

Abstract

In this paper we propose an approach to support the de-
sign and operation of dynamically adaptive systems. We ap-
ply the concept of variability modeling from software prod-
uct lines to define how systems adapt at runtime to changes
in their environment. Our approach models two dynamic
variability dimensions; environment variability, which de-
fines the conditions under which a system must adapt, and
structural variability which defines the resulting architec-
tural configurations. The variability dimensions identified
are modeled using domain-specific languages (DSMLs) tai-
lored to adaptive middleware technologies that provide sup-
port for runtime variability according to reconfiguration
policies. We describe our experience with applying this ap-
proach through a case study; the design of a flood warning
system.

Keywords: dynamic variability, architectural reconfigu-
ration, orthogonal variability models, domain specific mod-
eling languages, dynamic software product lines.

1 Introduction

It is increasingly common for systems to be required
to adapt dynamically to changes to their environment at
runtime. One solution to this requirement is to use the
adaptation mechanisms provided by reusable application-
independent middleware components [6, 10, 17, 25]. Mid-
dleware platforms support the capability to reconfigure
component compositions at run-time. In contrast to solu-
tions where application behaviour and adaptation are en-
twined, using a middleware platform to enable adapta-
tion separates the application-specific functionality from the
adaptation concerns, thereby reducing complexity [22].

A dynamically adaptive system (DAS) developed using
the support offered by a middleware platform can be con-

∗This work has been supported in part by and EPSRC project
EP/C010345/1 The Divergent Grid.

ceptualized as a dynamic software product line (SPL) in
which variabilities are bound at run-time. Each component-
based configuration can be considered as a product or vari-
ant of the DAS. This means that variants of the DAS product
line can be produced at runtime. The DAS product line de-
fines a core reference architecture that constrains each prod-
uct variant’s component configuration.

In this context, the developer of a middleware-based
DAS must deal with many variability decisions. Currently,
developers of such systems have to make these decisions
by reasoning at low levels of abstraction. To decide which
components are required and how the components need to
be configured and reconfigured in response to data about
the state of the environment, DAS developers need detailed
knowledge of the supporting middleware infrastructure. By
contrast, architects and domain experts work at a much
higher level of abstraction. Their job is to understand the
characteristics of the DAS’s operational environment and
the domain concerns of the stakeholders. There is therefore
a wide semantic gap between the way domain experts, sys-
tem architects and programmers work in DAS development
projects [1].

The concept of variability management originally devel-
oped for SPLs offers a means to bridge this semantic gap.
Variability management refers to a repeatable, systematic
approach to structure, implement and document the vari-
ability in a software family. Variability requires a scalable
and consistent approach that exploits reuse independently
from specific contexts. A number of researchers have ap-
plied SPL engineering techniques to the development of
DASs [8, 17, 20, 29]. Our approach [2–4, 13, 26] provides
variability management by systematically promoting soft-
ware reuse and the use of models as first class entities. We
raise the level of abstraction at which DAS developers can
work by specifying structure and behaviour of a DAS us-
ing domain concepts and support for structured variability
management.

We use domain-specific modelling languages (DSMLs)
to model the solution architecture and the set of valid system
configurations. Code and XML descriptions of component

1



configurations are automatically generated from these mod-
els. The reconfigurations in terms of components and the
conditions that trigger the reconfigurations are also modeled
and used to generate the reconfiguration policies that drive
the system adaptations at run-time and which are supported
by the middleware platforms.

The remainder of this paper is structured as follows. In
section 2, we discuss dynamic variability and present two
dimensions of variability in a DAS. Section 3 presents our
model-driven design approach for DASs. In section 4, we il-
lustrate our approach with an adaptive flood warning system
built atop a wireless sensor network. Section 5 places our
work in the context of related work. Section 6 concludes the
paper with a summary and briefly highlights future work.

2 Adaptive Systems as Dynampic SPLs

At Lancaster University, we have developed a family of
middleware platforms that use component-based technolo-
gies and the component model called OpenCOM [7]. Us-
ing OpenCOM both middleware and applications are con-
ceived in form of components that follow the same model,
i.e. the developers see no hard distinction between the appli-
cation and the middleware platforms. OpenCOM offers the
concept of component frameworks. A component frame-
work is a collection of components that address a specific
area of concern of middleware behaviour and offers a set of
constrains. Component frameworks underpin the dynamic
plug-in mechanism of components to change or add new
behaviour at runtime. Adaptive behavior is specified us-
ing reconfiguration policies which are performed during the
execution of the system. These policies are of the form on-
event-do-actions. Actions consist of architectural changes
that plug and unplug components into and from component
frameworks. A context-aware engine monitors relevant en-
vironmental properties and events to identify the appropri-
ate reconfiguration policy that holds. Crucially, the mid-
dleware platforms support DAS development by separating
the concerns of the application functionality from the adap-
tation requirements.

Given the above, a DAS is described as a dynamic soft-
ware product line. The variants of the DAS are defined by
an n-tuple of component frameworks in which component
configurations will be determined at runtime according to
changes the environment of the DAS. Each DAS variant is
called as structural variant. The component frameworks as-
sociated with each structural variant are established accord-
ing to the domain problem.

GridStix Case Study
GridStix was a flood warning system deployed on a re-

mote stretch of the River Ribble in North West England
[18]. GridStix is supported by the Gridkit middleware plat-

form [15], one of the members of the OpenCOM family of
reflective middleware systems developed for grid applica-
tions. GridStix is used in this paper to demonstrate the pro-
posed approach. This flooding warning system was con-
ceived as a wireless network of sensor nodes able to per-
form local computation and communicate with other nodes.
GridStix would therefore act as a lightweight computational
grid, permitting distributed processing of sensor data and
the execution of predictive models. These functionalities
require heavy support for heterogeneous network technolo-
gies. However, a trade-off has to be done as, on the one
hand, networking support must be power efficient to facili-
tate the operation of nodes for extended periods of time. On
the other hand, applications such as image-based processing
of pictures of the river for flow prediction also require high
performance (and therefore power demanding) networking
support. The above should also take into account varying re-
silience requirements. In that respect, during quiescent pe-
riods and when flooding is unlikely, data may reach the off-
site cluster with an allowed high delay. During these quiet
periods, low energy consumption is a major requirement to
maximize the life-time of the nodes. By contrast, when a
flood is imminent, the network should react promptly, while
providing a high degree of resilience (e.g. a low sensitivity
to disruptions), even if this means its energy supplies run
down much more quickly.

GridStix has given us an opportunity to work with a real
self-adaptive application. A possible set of reconfiguration
opportunities (transitions) for this case study is shown in
Figure 1. Three structural variants of the system were iden-
tified that correspond with the three possible states of the
river Normal, Alert, and Emergency. Each structural variant
is composed by two sets of component frameworks, one per
domain of concern. These component frameworks are the
Spanning Tree and the Network component framework that
support the routing algorithm for data transmission between
the nodes (domain 1) and the network technology (domain
2) to be used. The Spanning Tree component framework
has associated two possible component configurations, the
Shortest Path Spanning Tree and the Fewest Hop Span-
ning Three. The Network component framework has associ-
ated two possible component configurations that correspond
with the WiFi and the Bluetooh technologies. According to
events and properties of the environment different compo-
nent configurations of these two frameworks will be chosen
during execution.

As for the properties of the different component config-
urations to use, the Fewest Hop Spanning Tree offers better
performance than the Shortest Path Spanning Tree; how-
ever the former is battery consuming. Similar situations are
associated with the WiFi and the Bluetooh technologies as
WiFi technology is more efficient than Bluetooh but also re-
quires more energy. A trade-off between these properties

2



has to be done during the requirements specification, sec-
tion 4.2 explains more details. The adaptations shown in
Figure 1 are result of these trade-off decisions. We also
show in that figure a representative pseudo-code for two re-
configuration policies (one per component framework) re-
lating to the transition at the bottom.

Figure 1. Transition diagram

The concepts derived from our middleware research that
are relevant to this paper are depicted in Figure 2. Figure 2
is a UML class diagram that serves as a conceptual model
to help explain the description that follows.

Component Frameworks are management units for sets
of components that address specific solution Domains, such
as routing algorithms, networking technologies and ser-
vice discovery. A DAS will typically employ a number of
Structural Variants which are sets of Component Configura-
tions. The Component Configurations which managed by
the Component Frameworks and its constrains will vary,
with components being added, removed and replaced, as
the DAS adapts to changes in its Environment. Every Com-
ponent Configuration must conform to a Reference Archi-
tecture which describes the structural commonalities of a
DAS that always hold. Effecting adaptation may require the
ability to introspect about the system architecture at run-
time. This capability is provided by reflection, with recon-
figuration policies defining the adaptive behaviour. As said
above, reconfiguration policies take the form on-event-do-
actions. Actions are changes to component configurations
while events in the environment are notified by a context
engine.

Each system configuration can be considered as a prod-
uct in a product-line in which the variability decisions nec-
essary to instantiate the product are made at run-time. Fig-
ure 2 depicts this by assigning the roles SPL to the DAS and

Product to the Structural Variant.
Structural Variability and Environment Variability are di-

mensions of dynamic variability (also called runtime vari-
ability) [2]. Both Environment and Structural Variability can
be modeled as variation points as depicted in Figure 3 that
uses the case study GridStix introduced above. Component
Frameworks offer Structural Variability in response to Envi-
ronment Variability as shown in (1) of Figure 3. In Envi-
ronment Variability, the variation points represent properties
of the environment. In Structural Variability, the variation
points represent different configurations permissible within
the constraints of the DAS’s Reference Architecture. For the
DAS to operate in the context of any Environment Variant, it
needs to be configured as the appropriate Structural Variant,
see (2) of Figure 3.

3 A model-driven approach for developing
DSPLs

Even with the reusable solution-domain abstractions pro-
vided by component frameworks, DASs are complex to de-
velop. Software engineering support for DASs has lagged
the rate of advances in adaptive infrastructure, concentrat-
ing on support for downstream activities by developing,
for example, language support and architectural description
languages. In recent years, however, researchers have be-
gun to develop upstream support by adopting concepts from
SPLs, particularly feature modeling and variability model-
ing [8, 17, 20, 29].

The contribution of our work to software engineering
support for DAS development is to use a model-driven ap-
proach to manage the two dimensions of dynamic variabil-
ity. Models of the Structural Variability specify the architec-
ture of the system that will evolve over time during system
execution. A model of the Environment Variability specifies
the conditions and events that will trigger changes in the
architecture. The Structural Variants are the link between
these two kind of models. The proposed models can be con-
structed using the Genie approach and associated tool [3, 4].
From Genie’s models, component source code, component
framework configurations, and reconfiguration policies [4]
can be generated. Figure 4 illustrates the roles played by the
middleware and Genie in the development process.

At level 3 in Figure 4 is the highest level addressed by
Genie. This is where Genie uses the results of the require-
ments analysis [2, 13, 26] to model Environment Variability
using the first of Genie’s two domain specific modeling lan-
guages (DSMLs). Genie uses a Transition Diagram DSML
in which each state represents a Structural Variant, and the
transitions between these variants represent the adaptation
scenarios. Each Structural Variant must satisfy both the
global Goals of the DAS and the requirements that are spe-
cific to each Environment Variant. The Structural Variabil-

3



Figure 2. Conceptual Model

Figure 3. Dynamic variability dimensions for the flooding warning system

ity and the common Reference Architecture with which all
Structural Variants must comply is provided by one or more
Component Frameworks where each Component Frame-
work addresses a particular solution domain (Figure 2).

Variability requires careful management and it is impor-
tant that DAS developers are aware of the different variants
they must deal with. To help promote this need, Genie sup-
ports the use of Orthogonal Variability models [23] to cap-
ture the environment and structural variabilities. An Or-
thogonal Variability model is developed to capture the Envi-
ronment Variability and for the variabilities defined for each
Component Framework. These models are mapped onto the
Transition Diagram DSML and so make explicit the relation-
ship between Environmental Variants and Structural Vari-
ants. Their use is further illustrated in the following section.

Figure 5 shows a hypothetical example with three structural
variants in a transition diagram. Each structural variant of
the DAS is composed by two component frameworks asso-
ciated with two domains of middleware behaviour (domains
a and b).

At level 2 in Figure 4 the second Genie DSML, the
OpenCOM DSML, is used to elaborate on the structural vari-
abilities identified in the Transition Diagram DSML and the
Orthogonal Variability models. The OpenCOM DSML is es-
sentially an architectural description language (ADL) that,
in our implementation of the Genie tool, is tailored to the
OpenCOM family of reflective middleware systems [5, 6].
Each Structural Variant is defined in level 2. The Reference
Architecture which each Structural Variant must respect is
also defined here. The Reference Architecture is defined

4



Figure 5. Structural Variants for two domains of middleware behaviour

Figure 4. The development model

according to the Component Frameworks used and the vari-
abilities are defined in terms of configurations of compo-
nents.

Crucially, the modelling of Structural Variability is re-
alized during the Domain Design in Domain Engineering.
Likewise, the modelling of the Environment and Variability
is mainly realized during the Design Analysis in Applica-
tion Engineering [1].

The lowest level, level 1, in Figure 4 represents the
mechanisms that define the configuration and reconfigura-

tions of the components. The code and policy rules that
drive these mechanisms are produced at level 2 using the
OpenCOM DSML which has generative capabilities. The
generality of the Genie model-based approach illustrated
in Figure 4 increases from bottom to top. Levels 1 and
2 provide principled development and pattern-based reuse
of OpenCOM-based applications. Level 3 is generic to any
DAS for which the Environment can be conceptualized as a
discrete set of Environment Variants.

In the next section we illustrate a full development life-
cycle of a DAS that implements a flood warning system
called GridStix [15, 18]. We show how Genie is used to
model the variabilities. We describe the definition of the
GridStix architecture and Component Configurations, and
ultimately the generation of the policy rules and configu-
ration code that implement GridStix within its run-time En-
vironment.

4 Case Study: the GridStix Flood Warning
System

4.1 Modelling Dynamic Variability

This section shows the application of our approach in
the development and operation of the GridStix which was
introduced in the last section.

The properties of the Transition Diagram for GridStix was
derived from the LoREM requirements analysis of the envi-

5



ronment variabilities. Space does not permit us to describe
it here but, LoREM and its application to GridStix is ex-
plained in [2, 13, 26]. An overview of the reconfiguration
opportunities (transitions) that were identified during the re-
quirements analysis for the case study is shown in Figure
1. The Transition Diagram developed with the Genie tool is
shown in Figure 6.

Each state represents a structural variant intended to sat-
isfy the requirements specific to one of the environment
variants. The transitions between structural variants rep-
resent events derived from the requirements analysis of the
adaptation scenarios. For example, the adaptation from the
Alert variant to that for the Emergency variant occurs on the
event FloodPredicted. FloodPredicted is an event generated
by GridStix’s predictive model that is based on Water Depth
and Flow Rate measured by GridStix’s sensors.

In addition to depicting the Transition diagram DSML,
Figure 6 illustrates the the use of orthogonal variability
modeling. Both the environmental and structural variabili-
ties are modeled. In Figure 6 the central orthogonal variabil-
ity model depicts the environment variants. The other two
model the component frameworks that provided GridStix’s
structural variability. Each structural orthogonal variabil-
ity model represents one of the component frameworks per
domain needed to provide key GridStix functionality. The
component frameworks used were selected from the set of-
fered by the middleware platform Gridkit/OpenCOM.

Component frameworks provide architectural patterns
and sets of components that can be configured within the
constraints imposed by the architectural patterns. In this
sense, component frameworks’ architectural patterns repre-
sent reference architectures. Hence, development of com-
ponent frameworks that support domains such as, for exam-
ple, routing algorithms and networking technologies repre-
sents domain engineering. The available component frame-
works thus support application engineering, of which Grid-
Stix’s development was an example. The component frame-
works can also be thought of as product families that em-
body commonalities represented by the architectural pat-
terns, and variabilities represented by the possible compo-
nent configurations. This is how they are represented by
Genie’s orthogonal variability models. The orthogonal vari-
ability models are mapped onto the structural variants in
the transition diagram, making explicit the relationship be-
tween the environmental and structural variants.

Two component frameworks provide the pluggable com-
ponents needed by GridStix: Spanning Tree and Network.
We will focus on the Spanning Tree component framework.
Here, we merely note that the other, the Network compo-
nent framework, was used to allow GridStix to switch dy-
namically between different short-range wireless network-
ing technologies according to requirements. The Spanning
Tree component framework provides components to imple-

ment a virtual topology of the network for routing data be-
tween nodes. Hence, for example, a component configura-
tion that supported the relatively energy-efficient Shortest
Path Spanning Tree was required by the Normal and Alert
variants, while a more fault-tolerant Fewest Hop Spanning
Tree configuration was required for the Emergency variant
where node failure was more likely.

The Transition diagram DSML defined a behavioural
model of GridStix that incorporated an abstract representa-
tion of the structural variabilities. The role of the OpenCOM
DSML was to explicate the structural variabilities by mod-
eling them as sets of component configurations. A separate
penCOM DSML model was developed to define the compo-
nent compositions for each variant defined by the compo-
nent frameworks. For the Spanning Tree framework, Short-
est Path and Fewest Hop models were developed.

The Spanning Tree component framework defines a
three-component architecture pattern. Hence both the
Shortest Path and Fewest Hop OpenCOM DSML models
provide components that perform the following three roles
(which are part of the invariant) [15]:

i. the Control component that encapsulates the dis-
tributed algorithm used to build and maintain the vir-
tual network topology.

ii. the Forwarding component that determines how mes-
sages are routed over the virtual topology.

iii. the State component that maintains and offers access
to generic state and information, such as a nearest
neighbour list.

Figure 7 illustates the OpenCOM DSML specification of
the configuration of the Shortest Path Spanning Tree that
is used to transmit data across the GridStix network in the
Normal and Alert variants. The topology of the component
configuration conforms to the Spanning Tree pattern, with
components selected that implement each of the Control,
Forwarding and State roles to provide a Shortest Path Span-
ning Tree. A similar model was developed for the Fewest
Hop configuration, and also the Bluetooth and WiFi vari-
ants for the Network framework.

Figure 7. Shortest path spanning tree variant

6



Figure 6. Transition diagram and the orthogonal variability models

From the configurations defined in the OpenCOM DSML
and the events and transitions defined in the Transition dia-
gram DSML, XML adaptation policies defining the recon-
figurations of the the GridStix structural variants were gen-
erated using the Genie tool. The role of the orthogonal
variability models here was essential to traverse the mod-
els to allow this generation. Thus defined, the GridKit run-
time system managed the execution of GridStix, adapting
GridStix as the environment fluctuated by adopting differ-
ent component configurations. Figure 8 shows an exam-
ple of one of the generated adaptation policies. Crucially,
new adaptation policies can be added during runtime. This
means that new reconfiguration diagrams can be designed
and used to generate new adaptation policies to produce new
adaptive behaviors.

To demonstrate the generality of the approach a further
case study has been performed for a service discovery ap-
plication and is described in [2, 4].

4.2 Discussion

The above case study has demonstrated the application
and advantages of our approach to meet the challenges de-
scribed in the introduction; specifically the wide semantic
gap between the way domain experts, system architects and
programmers work and the lack of structured management
of variability. The following elaborates further and dis-

Figure 8. An example of a generated adapta-
tion policy

cusses how these challenges are addressed by our approach.
Use of higher levels of abstraction to close the semantic

gap between stakeholders
Without an approach like the solution supported by the

Genie approach and its tool, developers work at the low-
level of abstraction provided by the syntax of scripting lan-
guages or programming languages like Java or C++. Such
programming languages do not convey either architecture-
based design or domain semantics. The proposed approach,
as seen in the case study, allows the developers to work

7



at a higher level of abstraction using models that specify
the component frameworks with their configurations, and
their reconfigurations. The use of models that show graph-
ical representations of architectural concepts, as shown in
the component configurations in Figure 7 reduce both effort
and complexity during the lifecycle. Figure 7 shows just 3
components, 2 bindings, and 4 exported interfaces; however
the generated XML file that describes the configuration has
102 lines. This XML file includes standard bindings (con-
nections) to central components of the middleware platform
that are included in the code that generates the XML file but
are not shown in the model (they are included in the invari-
ant part of the configuration). The complexity and effort
needed when analyzing the configurations and their connec-
tions is lessened using the models provided. This is because
these models are used to hide information that is not rele-
vant for domain analysis and design.

However, it is not only the management of architectural
(i.e. structural) aspects of configurations and components
that can be realized with the DSMLs of the approach. We
have demonstrated that specification of dynamic adaptive
behaviour in terms of reconfigurations is also possible. With
the approach, middleware developers use abstractions pro-
vided by the transition diagrams to reason, plan, and vali-
date the reconfigurations. When the developer edits a transi-
tion diagram, she has an overview of all the reconfigurations
that an application can go through. Transition diagrams of-
fer an overall graphic-based view of the whole process of
reconfigurations and are more amenable to analysis.

The transition diagrams described shows 3 structural
variants and 6 possible reconfigurations (arcs) which rep-
resent 8 different reconfiguration policies. The reconfigu-
ration policies are associated with two different component
frameworks. The overall view offered by the transition dia-
grams described above contrasts with the partial text-based
view offered by each reconfiguration policy. Using only
partial views makes it very probable that the developers ig-
nore, or simply lose sight of, important interdependency re-
lationships. Overlooking dependencies can cause failures
and inconsistencies during execution. Furthermore, identi-
fying the source of the error may require significant effort
and time. Another advantage of these models is the fact that
transition diagrams models resemble state-transitions mod-
els which are a widely used and understood notations.

The use of transition diagrams models has given ev-
idence of improving the interaction and communication
between programmers, architects, requirements engineers,
and domain experts. This is supported by the work on goal
modelling to derive the requirements of the environment
variability and required system behaviour using LoREM.

Structured management of variability
The models designed using the DSMLs offered by the

approach support the definition of strategies for structured

software reuse and variability management. The approach
proposes variability notations and the associated models for
the explicit management of the dynamic variability sup-
ported by the middleware platforms.

Such notations and models rely on the use of the compo-
nent frameworks and the transition diagram models. The
strategy proposed differentiates structural variability and
environment or context variability. The architecture defined
by the component frameworks basically describes the struc-
tural commonalities. Different configurations representing
the variants of the component frameworks exist that fol-
low the well-defined constraints imposed by their respec-
tive frameworks. Essentially, the environment and context
variability models allow the specification of adaptations en-
abled by the middleware-based policy mechanism for re-
configuration. Using the two dimensions of dynamic vari-
ability that are proposed, the approach separates the ap-
plication specific functionality offered by the component
frameworks from the adaptation concerns, thereby reducing
complexity ([22].

The proposed variability management structures docu-
ment the variability in a standard and repeatable manner
[19]. The proposed variability models have been applied
in two case studies from very different domains (i.e ser-
vice discovery in mobile computing scenarios and sensor
networks as explained in this paper). Furthermore, the pro-
posed use of the orthogonal variability models offers the po-
tential to achieve traceability through the different models
and resultant implementation artefacts, as well as the cor-
respondence between the changes to the requirements and
final behaviour of the system according to varying environ-
mental conditions.

5 Related Work

Current approaches of product lines base their support
for variability on the configuration knowledge which is ex-
pressed explicitly when synthesizing a product (variant).
This is enough in situations when the configuration is done
statically. Traditionally, variability is solved at predelivery
[16] time. In our case, the customization needs to take place
postdelivery; at runtime. Genie is at the heart of our ap-
proach. Genie supports the structured management of vari-
ation points that are bound at runtime. The dependencies
between structural variability (architectural elements) and
environment variability are made explicit. Genie is comple-
mented by the LoREM goal-driven requirements approach.
LoREM supports the formulation of the DAS’s require-
ments, helping the analyst to understand the characteristics
of the DAS’s operational environment and the adaptation
scenarios [2, 13, 26]. The goal models are used to derive the
DSML models used in Genie. At the bottom, the middle-
ware platform underpins the reorganization of the ongoing

8



architecture at run-time providing particular system support
as the requirements imposed by the environment change.

Many mechanisms for runtime variability management
have been proposed. They are mainly focused on exchange
of runtime entities, parametrization, inheritance for special-
ization, and preprocessor directives [11, 12, 24, 27]. Our
approach is more coarse-grained and uses the management
of whole sets of components, their connections and seman-
tics. However, our approach is complementary to the finer
grain styles cited above. For example in each configura-
tion, traditional fine-grained management of variability can
be used to describe specific component replacements or spe-
cializations.

Of particular relevance to our work is MADAM [9, 17]
which uses the adaptation capabilities offered by a mid-
dleware platform, and treats DASs as software product
lines [17]. MADAM also takes into account the benefits
of coarse-grained variability mechanisms, sharing some of
the principles of our approach to support variability. In
the MADAM approach, variants are treated as configura-
tions, not simply components, in the same way that compo-
nent frameworks support variants in Genie and OpenCOM.
MADAM also uses the configurator pattern for event-based
reconfiguration. Despite the similarities with MADAM, our
research differs in several significant ways. In the case of
the reconfiguration approach supported at the middleware
level during execution, [17] has a common reconfiguration
pattern based upon the context/utility functions. In our ap-
proach, we model reconfiguration explicitly using reconfig-
uration policies. Our approach is also more general since
the focus of MADAM is restricted to mobile computing ap-
plications, which Genie can also support [2].

Wolfinger et al. [29] demonstrate the benefits of the in-
tegration of an existing product line engineering tool suite
with a plug-in platform for enterprise software. As in our
case, automatic runtime adaptation and reconfiguration are
achieved by using the knowledge documented in variability
models. Our differences exist mainly because of the differ-
ent aims of each approach. Their work focuses on enterprise
software while our work covers the domains grid and mo-
bile computing, and embedded systems. While variability
decisions in [29] are user-centered our variability decisions
are environment-centered.

When performing dynamic reconfiguration we ensure
that updates complete atomically and do not impact the in-
tegrity of the network. To do this, frameworks are placed in
a quiescent state ensuring that the reconfiguration is com-
plete and correct. In this sense, we are investigating the use
of architectural patterns to drive the generation of software
artefacts related to safe reconfiguration at that level. In this
sense the work presented by Gomaa and Hussein [14] is rel-
evant and complementary to our research.

6 Conclusions and Future Work

We have proposed combining the Genie model-driven
development approach [2, 4], and tool, and middleware
platforms to support the development and operation of dy-
namically adaptive systems from requirements to imple-
mentation. We argue that a DAS can be regarded as a
product family line in which variabilities are bound at run-
time instead of at pre-delivery time. Key to our approach
is the recognition and separation of environment and struc-
tural (dynamic) variability. Here, environment variability
offers a way to conceptualize and reason about how the sys-
tem’s environment will change during system execution and
the implications of this variability for how the system must
adapt.

The role of Genie is to develop from a definition of a
DAS’s environment variabilities and triggers for adaptation,
a design that satisfies the requirements and is capable of
adapting to the environment variabilities. Genie supports
systems capable of performing online-determined reconfig-
uration. The Genie tool [4] is tailored to one example of
such a software infrastructure: Gridkit , which is itself a
member of the OpenCOM family of middleware systems.
This permits the Genie tool to exploit long-standing do-
main engineering efforts that have produced Gridkit’s li-
brary of reusable domain-specific component frameworks,
using two complementary domain-specific modeling lan-
guages. It also permits Genie to perform code generation
in the form of policy rules that define the configurations
and reconfigurations of a system in order to implement the
structural variants and triggers for their adaptation.

We have validated our approach using the GridStix case
study [15, 18]. GridStix is a wireless sensor network for
flood prediction that has been deployed on the River Ribble
in North West England.

To date the Genie approach is supported by the Genie
tool. We aim to further systematize the integration of re-
quirements analysis given by LoREM and Genie to help
extend Genie’s model-driven life-cycle coverage to higher
levels of abstraction to encompass requirements. Traceabil-
ity will also be aided if we are successful. We are also
working on RELAX [28], our new proposed language for
the requirements specification of self-adaptive systems. The
RELAX philosophy and its vocabulary explicitly acknowl-
edges the need to deal with the levels of uncertainty, which
are unavoidable when introducing self-adaptation capabil-
ities to systems. The model-driven approach, variability
management, and runtime support offered by Genie and the
middleware platforms offer an implementation context for
the self-adaptive systems specified using RELAX.

A further open research issue is concerned with the scal-
ability of our approach. There is a potential for a combi-
natorial explosion of the number of reconfiguration paths

9



in the transition diagrams policy-based reconfigurations. In
the GridStix case study the number of reconfiguration paths
is manageable, but this might not be the case for other do-
mains. Our partial results on this topic are in [21].

References

[1] N. Bencomo. Supporting the Modelling and Generation of
Reflective Middleware Families and Applications using Dy-
namic Variability, PhD Thesis. PhD thesis, 2008.

[2] N. Bencomo, G. Blair, C. Flores, and P. Sawyer. Reflective
component-based technologies to support dynamic variabil-
ity. In 2nd International Workshop on Variability Modelling
of Software-intensive Systems (VaMoS’08), 2008.

[3] N. Bencomo, P. Grace, and G. Blair. Models, runtime re-
flective mechanisms and family-based systems to support
adaptation. In Workshop on MOdel Driven Development for
Middleware (MODDM), 2006.

[4] N. Bencomo, P. Grace, C. Flores, D. Hughes, and G. Blair.
Genie: Supporting the model driven development of reflec-
tive, component-based adaptive systems. ICSE 2008 - Re-
search Demonstrations Track, 2008.

[5] G. Blair, G. Coulson, A. Andersen, L. Blair, M. Clarke,
F. Costa, H. Duran-Limon, T. Fitzpatrick, L. Johnston,
R. Moreira, N. Parlavantzas, and K. Saikoski. The design
and implementation of open orb 2. IEEE Distributed Sys-
tems Online, 2(6), 2001.

[6] G. Blair, G. Coulson, and P. Grace. Research directions
in reflective middleware: the lancaster experience. In 3rd
Workshop on Reflective and Adaptive Middleware, pages
262–267, 2004.

[7] G. Coulson, G. Blair, P. Grace, A. Joolia, K. Lee, and
J. Ueyama. A component model for building systems soft-
ware. In Software Engineering and Applications (SEA’04),
USA, 2004.

[8] D. Dhungana, P. Grunbacher, and R. Rabiser. Domain-
specific adaptations of product line variability modeling. In
IFIP Working Conference on Situational Method Engineer-
ing: Fundamentals and Experiences, Geneva, 2007.

[9] J. Floch, S. Hallsteinsen, E. Stav, F. Eliassen, K. Lund, and
E. Gjorven. Using architecture models for runtime adapt-
ability. Software IEEE, 23(2):62–70, 2006.

[10] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, and
P. Steenkiste. Rainbow: Architecture-based self-adaptation
with reusable infrastructure. IEEE Computer, 37(10), 2004.

[11] M. Goedicke, C. Köllmann, and U. Zdun. Designing run-
time variation points in product line architectures: three
cases. Science of Computer Programming Special Issue:
Software variability management, 53(3):353 – 380, 2004.

[12] M. Goedicke, K. Pohl, and U. Zdun. Domain-specific run-
time variability in product line architectures. In 8th Interna-
tional Conference on Object-Oriented. Information Systems,
pages 384 – 396, 2002.

[13] H. J. Goldsby, P. Sawyer, N. Bencomo, D. Hughes, and B. H.
Cheng. Goal-based modeling of dynamically adaptive sys-
tem requirements. In 15th IEEE Conference on the Engi-
neering of Computer Based Systems (ECBS), 2008.

[14] H. Gomaa and M. Hussein. Model-based software design
and adaptation. In Software Engineering for Adaptive and
Self-Managing Systems (SEAMS’07), 2007.

[15] P. Grace, D. Hughes, B. Porter, G. Blair, G. Coulson, and
F. Taiani. Experiences with open overlays: A middleware
approach to network heterogeneity. In Proc. 3rd ACM Inter-
national EuroSys Conference, Glasgow, Scotland, 2008.

[16] J. V. Gurp, J. Bosch, and M. Svahnberg. On the notion of
variability in software product lines. In Working IEEE/IFIP
Conference on Software Architecture (WISCA’01), 2001.

[17] S. Hallsteinsen, E. Stav, A. Solberg, and J. Floch. Us-
ing product line techniques to build adaptive systems. In
SPLC ’06: Proceedings of the 10th International on Soft-
ware Product Line Conference, pages 141–150, Washington,
DC, USA, 2006. IEEE Computer Society.

[18] D. Hughes, P. Greenwood, G. Coulson, G. Blair, F. Pappen-
berger, P. Smith, and K. Beven. An intelligent and adaptable
flood monitoring and warning system. In 5th UK E-Science
All Hands Meeting (AHM06) (Best Paper Award), 2006.

[19] M. Jaring. Variability Engineering as an Integral Part of the
Software Product Family Development Process. PhD Thesis.
PhD thesis, University of Groningen, 2005.

[20] M. Kim, J. Jeong, and S. Park. From product lines to self-
managed systems: an architecture-based runtime reconfigu-
ration framework. In Workshop on Design and Evolution of
Autonomic Application Software, 2005.

[21] B. Morin, F. Fleurey, N. Bencomo, J.-M. Jezequel, A. Sol-
berg, V. Dehlen, and G. Blair. An aspect-oriented and
model-driven approach for managing dynamic variability. In
MODELS’08 Conference, France, 2008.

[22] P. Oreizy, M. M. Gorlick, R. N. Taylor, D. Heimbigner,
G. Johnson, N. Medvidovic, A. Quilici, D. S. Rosenblum,
and A. L. Wolf. An architecture-based approach to self-
adaptive software. IEEE Intelligent Systems and Their Ap-
plications, 14(3):54–62, 1999.

[23] K. Pohl, G. Böckle, and F. v. d. Linden. Software Product
Line Engineering- Foundations, Principles, and Techniques.
Springer, 2005.

[24] E. Posnak and G. Lavender. An adaptive framework for de-
veloping multimedia. Communications ACM, 1997.

[25] M. Roman, F. Kon, and R. H. Campbell. Reflective middle-
ware: From the desk to your hand. IEEE DS Online, Special
Issue on Reflective Middleware, 2(2), 2001.

[26] P. Sawyer, N. Bencomo, P. Hughes, Danny andl Grace, H. J.
Goldsby, and B. H. C. Cheng. Visualizing the analysis of
dynamically adaptive systems using i* and dsls. In REV’07,
India, 2007.

[27] M. Svahnberg, J. v. Gurp, and J. Bosch. A taxonomy of
variability realization techniques. Software: Practice and
Experience, 35(8):705 – 754, 2005.

[28] J. Whittle, P. Sawyer, N. Bencomo, and B. Cheng. A lan-
guage for requirements engineering of self-adaptive sys-
tems. In SOCCER Workshop, 2008.

[29] R. Wolfinger, S. Reiter, D. Dhungana, P. Grunbacher, and
H. Prahofer. Supporting runtime system adaptation through
product line engineering and plug-in techniques. In ICCBSS,
pages 21 – 30, 2008.

10


