Engineering Complex Adaptations in Highly

Heterogeneous Distributed Systems

Paul Grace, Gordon S. Blair, Carlos Flores Cortes, Nelly Bencomo
Computing Department
Lancaster University
Lancaster, UK

{gracep, gordon, c.florescortes, bencomo}@comp.lancs.ac.uk

ABSTRACT

Distributed systems now encounter extreme hetemigeim the
form of diverse devices, network types etc., argb aleed to
dynamically adapt to changing environmental coodgi Self-
adaptive middleware is ideally situated to addrabese
challenges. However, developing such softwarecisnaplex task.
In this paper, we present the Gridkit self* apptoao the
engineering of reflective middleware; this embrasesge of the
art software engineering practices, and flexiblenaiyic
adaptation mechanisms to better support system lafmrs.
Domain specific frameworks are modeled and develope
enhance configurability and reconfigurability. Weakiate this
approach using case studies in the domains ofcgediscovery
and network overlays. These demonstrate the benefitthe
approach in terms of aiding and simplifying the qass of
creating self-configuring and self-adaptive softevar

Categories and Subject Descriptors
D.2.11 [Roftware Engineering]: Software Architectures -
Patterns (Reflection)

General Terms
Management, Design.

Keywords

Reflection, middleware, adaptation, heterogeneity

1. INTRODUCTION

As software systems become more ubiquitous a ness cbf
large-scale distributed systems has emerged; krasdystems-
of-Systems (SoS) [1]. These are composed of geographically
remote systems that are combined to deliver ses\icat cross
device, platform and system administration bouraariAn
example of a SoS is a set of wireless sensor nksaeployed
across rivers to monitor flooding; these send tlaita to flood
prediction models executing on a computational dgnich fixed
infrastructure network. SoS of this type are chiréged by two

Permission to make digital or hard copies of alpart of this work for

personal or classroom use is granted without feeiged that copies are
not made or distributed for profit or commercialvadtage and that
copies bear this notice and the full citation oa flist page. To copy
otherwise, or republish, to post on servers ordgistribute to lists,

requires prior specific permission and/or a fee.

Autonomics 2008, September 23 - 25, 2008, Turin, Italy.

Copyright © 2008 ICST ISBN # 978-963-9799-34-9.

fundamental properties:

0 extreme heterogeneity in terms of interconnected devices
(e.g. sensors, mobiles, embedded devices, PCslastgrs)
and the communication networks between them (arge!}
scale fixed networks through to wireless ad-hogvoéts);

0 dynamic change, i.e. the very nature of such pervasive
systems means that the operational environmenenergl
context will change over time e.g. due to user itgbior
the fluctuating environmental conditions of wiraes
networks.

Given these properties, this leads to a degre@wiptexity
that is orders of magnitude greater than traditiafiatributed
systems, and poses new challenges in the fieldyp&mic and
self-adapting distributed systems i.e. what typésadaptive
software are required to overcome these problemd,egually
how can the developers of such software be bafigrsted. We
believe that such challenges are best tackled eaintitdleware
level; and in particular in the form of adaptiveddieware [2].
Flexible, configurable and reconfigurable middlegvaan provide
the necessary mechanisms and transparency to déeelopers
to create SoS that self-configure, self-optimigdf-kseal and self-
manage.

In this paper we present our experiences of deusdop
Gridkit, which is a self-configuring and self-adiagt middleware
that can be deployed for applications that face é¢hx&eme
heterogeneity described previously; the core ppiesi of this
work has been previously published [3, 4]; howewee we focus
on the software engineering methodology we foll@andevelop
self-adaptive middleware. We believe this approgba Gridkit
self* approach) and the corresponding software frameworks can
be re-used within the field of both adaptive middiee and self-
adaptive software in general.

The Gridkit self* approach has three key elemehts tve
will present in detail in this paper:

0 Reflective software frameworks. These frameworks are
composed of components (which may be distributed).
Reflective information is maintained about the topy and
behaviour of the framework, this allows open inp@stion
and adaptation of the contained elements to supgedft
configuration and self-adaptation.

0 Flexible adaptation. Gridkit supports the developer in
performing two types of adaptation: inode-local
adaptation, where software is adapted on a single node) or ii
distributed adaptation, where the software to be adapted may
be spread across multiple hosts. Given the nattir§o8,

these will likely be performed in different conditis (e.g. in
a local area network versus in a wireless ad-hdworg).
Therefore, a one size fits all mechanism for adaptais
infeasible; hence we support the use of flexiblapaation
mechanisms.

o Domain Specific Engineering is the practice of collecting
past experience in a domain in the form of reusalskets.

fire, the connections between on-site and rematéralters could
be provided by satellite, GPRS, Wireless LAN, drestnetwork

types.

In terms of middleware, this scenario requires augr
communication service to enable controllers to efissate
commands to fire fighters (where to move, whicht pdirfire to
fight, where to put sensors, etc.); and a publidbssribe service

Hence, domain experts design and implement softwareis required for the collection of sensor eventsbéofed to the

components and software patterns to better
configuration and adaptation in the face of heteneity and
dynamic change within their particular domain.

We evaluate the Gridkit self* approach by considgriwo
distinct domains of middleware behaviour. We ussecatudy
based evaluation for both service discovery middlewand
network overlays; these illustrate how differenttware artifacts
(in terms of architectural patterns and transitimodels) are
created per domain; and demonstrate the benefitsthisf
philosophy in optimizing the configuration and atidion of
software, and also qualitatively in terms of sirfyptig the task of
systems developers.

The remainder of the paper is structured as folldsestion
2 introduces scenarios from the field of SoS andudwents and
challenges for research in this field. Section 8oiuces the
Gridkit self* approach. Section 4 presents the <sisdy based
evaluation. Section 5 discusses related work, aimallyf
concluding remarks and future work are in section 6

2. THE CHALLENGESOF SOS

This section analyses two pervasive Systems-ofeByst
scenarios that are characterized by the need foltipheu
middleware services to be deployed across a irnedra
heterogeneous network types.

2.1 Command & Control Systems

This scenario is focused on forest or savannahfigieting in
remote, poorly resourced locations. There are twer uoles
involved: controllers and fire fighters. Controllers manage the
operation: they move fire fighters, issue commaxeésjde where
to deploy fire sensors, and investigate real-timneukations that
predict the spread of the fire. Fire fighters usgbite devices, on
which graphics-based commands from controllersdisplayed,
and deploy wind speed sensor networks.

(G Fir fighter
B Controller

V| Legend
| | ® Sensar
|

1| & Cigite controllay

h—},_/ %,_/
Infrastrietime k—\(—éensor netanrk

etk A bioe netandk

Figure 1. Extreme heterogeneity in thefire fighting scenario.

Figure 1 illustrates a typical network configuratifor this
scenario: fire fighters form ad-hoc connections ween
themselves, sensors and on-site controllers; af@dsinucture
networks connect all controllers. Depending onltlvation of the

support controllers’ fire spread simulations.

2.2 Environmental Monitoring

In this scenario, a river, estuary and bay arerunstnted with
sensors to monitor temperature, water level, flate,r pollution
levels etc. Some of these sensors are networked Ehernet
(e.g. sensors in tidal-defence walls), while otl@rgploy wireless
technologies (e.g. IEEE 802.15.4 or 802.11 radiodpng-wave
radios for underwater use). These may be mobitbarwater, and
will come into the range of fixed sensors in anhad-fashion.
Point-to-point microwave connectivity may also keed to link
individual sensor networks to strategically platBcdgateways at
which sensor data is collated and cached.

Given this infrastructure, scientists in widely{sissed
locations selectively store data for future analygitegrate and
process live sensor data on their workstations;peaaively
visualise this data in real-time (supported bydewi conferencing
system); and use both stored and live data to ctatipoally
steer long running environmental simulations. FégRrillustrates
a typical network configuration for this scenafldie middleware
requirements for this scenario are: i) a data ee#di service is
needed to collect data from the sensor networlsani event
service is needed to ‘push’ sensor data to longingn
simulations, and iii) a streaming service is neetedsupport
video conferencing between fixed workstations.

Lezend ey

® Tixed Sensor @ Wihile Sensor I:'@ il | Adhec

B Workstafion A IP Gateway I: @ H| Sensor
L [BN B | ‘*lnn-----u-" F]JCBd

r ® .! '-._. ._,.l,’l i ...I Sensar

Figure 2. Extreme heter ogeneity in the environmental
informatics scenario.

2.3 Analysis

From these scenarios it can be seen that theraamg challenges
to resolve. Firstly, how can the functional middéee services
(e.g. resource discovery, publish-subscribe andersjh be
developed and deployed across diverse environnamditions.

Secondly, how can adaptations be performed to respo

changing conditions. Thirdly, how can the develgpef this

software be better supported in the face of conitylekinally,

how can non-functional
dependability be achieved in an end-to-end maringhis paper,
we aim to provide initial answers to the first thief these.

concerns such as securityd an

3. THE GRIDKIT SELF* APPROACH
3.1 TheGridkit Middleware

Gridkit [4] is a novel reflective middleware framew that
deploys an extensive and extensible set of middievwsarvices
over an infrastructure of overlay networks whiclitself creates
and manages. Gridkit is designed with a philosaplay promotes
openness as the underlying principle in engineerseif*

behaviour; this combines three core technologiesftection,

software components andcomponent frameworks [2].

Software components act as the building blocks
middleware, these third party deployable elemeBispfomote
configurability, re-configurability and re-use dtet middleware
level. Reflection is then used to provide a prifeipmechanism
to inspect the current system behaviour in orderinfmrm
decisions that dynamically adapt the componentsira at run-
time. Finally, component frameworks (discussed reater detail
in section 3.2) constrain the design space andsttope for
evolution within particular domains of middlewarehaviour; a
component framework is generally defined as a ctiia of rules
and contracts that govern the interaction of acéetomponents
[5]; in our case it further acts as the managintityetior self*
behaviour.

//_
Architecture Interface Meta Interception Meta
Meta Interface Interface Interface
Im)_.)_.
Base K
EuEl Base Leve _I Base Level
Address space
A

Figure 3. The meta-space structure of OpenCOMJ

Gridkit is built in terms of a Java-based refleetsomponent
model called OpenCOMJ (http://gridkit.sourceforgd)n This
presents a runtime kernel that supports the loaaimbinding of
lightweight software components at run-time. OpeMJQCalso
supports basic reflective operations (these carextended, as
described in section 3.2); figure 3 illustrates theee core meta-
space behaviorsinterface, architecture, and interception. The
interface and architecture meta-models provide cairal
reflection in terms of inspecting the interfacecofmponents, and
the topology of components in terms of connectetnehts; the
interception meta-model supports behavioural réflec by
enabling the dynamic insertion of interceptors, ch$upport the
insertion of pre- and post- behaviour on to integfa

The overall software architecture of Gridkit isutrated in
figure 4. Atop the component model is a set of radare
frameworks that can be composed to overcome heineiy
across diverse conditions. Thwerlays framework, which is a
distributed framework for the deployment of muléipbverlay
networks. In practice, this amounts to hosting, anset of
distributed overlay framework instances, a set ef-gverlay
plug-in components. This framework provides a lized view

of

of network behaviour (in potentially many different
environments) to allow higher level services arahfeworks to
be easily deployed without being concerned abaitutiderlying
network heterogeneity; section 4.2 describes theldpment of
this framework in more detail.

Above the overlays framework is a set of furtheertical”
frameworks that provide functionality in varioughargonal areas,
and can optionally be included or not included dffecent
devices. In brief, the frameworks are as followse interaction
framework accepts multiple interaction type plug-ins (e.®@®R
publish-subscribe, group communication); eevice discovery
framework accepts plug-in strategies to discover application
services (e.g. SLP, UPnP, Salutation); ttesource discovery
framework accepts plug-in strategies to discoveoueces such as
CPUs and storage (e.g. peer-to-peer search); réseurce
management and resource monitoring frameworks are
respectively responsible for managing and monitpriesources;
and thesecurity framework provides general security services for
the rest of the frameworks.

These illustrate a central philosophy of capturg@main
behaviour within individual frameworks in order firem to be
developed and optimized individually by domain expeHence,
the internal architectures are likely to be sigrifitly different;
however, the component-philosophy of Gridkit allowsese
frameworks to be composed to fit a wide range glirements.
This is illustrated in the case-studies of sectipwhere we focus
on the development of service discovery behaviour.

Web services

Resource
mgmt

Overlays framewol

Service
discovery

Resource
monitoring

Resource

Interactiorn)
discovery

Security

OpenCOM component model

Figure 4. The Gridkit architecture

3.2 Flexible Adaptation

As previously described, Gridkit provides softwéemeworks as
the tools to perform and manage adaption. Howesgeif*
systems will typically require a wide range of addipn types
e.g. adapting software within an address space awmdpto
adapting software across machines in a coordinat@ther; and
these will take place in diverse operational cdodg e.g. across
PCs in a fixed network or on sensors in a wirelagshoc
networks. Hence, we believe that a one-size fitsathod is
infeasible, and Gridkit therefore provides develspewith
flexible, extensible frameworks that can be taibréo the
requirements. Here, we present example mechanisons f
performing node-local and distributed adaptation.

3.2.1 Node-local Adaptation

The local software framework model (illustratedfigure 5) is
based upon the concept of composite componentsh Eac
framework is an OpenCOM component that has internal
architecture. Additionally, each framework suppdiis following
dimensions for performing safe, valid reconfiguras in the local
address space: i) an architecture meta-protocplvalidated

reconfigurations, iii) quiescence management, aw)d policy
configurators.

Context Engine

Eeflective

4
1t Meta-protocol

Component

] ramewo
Configurator G

Graph of
intzrnal

components

Figure 5. Frameworksfor Node-local Adaptation

The architecture meta-protocol supports introspection and
dynamic reconfiguration. Each framework maintainsloaal
‘graph’ representing the internal structure. Theotqcol
operations act on and manipulate this meta-grdgghcomponents
and their connections can be viewed, componentsheaadded,
removed, etc. Any changes to the graph are théectedl in the
concrete components.

Validation of reconfigurations. Providing open access to the
structure of a system, and the ability to make tinme changes,
increases the likelihood of system failure and spino third
party attack. To guard against this, each framewsgorts a
‘health check’ mechanism (illustrated in figure & the required
interface calledlAccept); components encapsulating knowledge
about valid dynamic reconfigurations for this pastar
framework are then plugged into this interface. HEac
reconfiguration is applied as a local transactibence once
committed, a reconfiguration is validated such thavalid
attempts are rolled back to the previous safe.state

Quiescence Management. Reconfiguration operations must
only be carried out when a framework is in a safesgent state.
If a change to the configuration is made while onenore service
calls are executing, then the results of thesedations could be
compromised or lost. Therefore, each framework ides/ a
readers/writers lock for access to the local grdpdch service
call accesses the lock as a reader (there carrémders using the
lock at any time). Any reflective call accesseslttk as a writer
(a single writer can access the lock when therenareeaders).
Interceptors are used to manage access; attackedapd post-
methods implement the roles of a readers/writehstiso. E.g. a
pre method accesses the lock and increments tlierreaunt,
while the post method decrements the count andig ihe last
reader the lock is released for writers.

Configuration Management. Local frameworks use the
configurator pattern [6] to perform adaptations.cénfigurator
acts as a unit of autonomy for making decisionsuafaden and
how to change the framework. This maintains a dfelocal
policies, in the form of configuration patterns aadaptation
rules; these are described in XML and use the ECemdition-
Action style. When an event is detected (typicadlycontext
change from the context engine), it applies theioact.e.
configure the framework, or perform a transitioronfr one

topology to another. Such actions are enacted hpking
operations on the architecture meta-protocol.

3.2.2 Distributed Adaptation

Adapting middleware may require software to be seth@cross
hosts in a co-ordinated manner. For example, tongdhathe
behaviour of a multicast protocol, the software @ach
participating node must be reconfigured. Here weculis how
Gridkit supports distributed adaptation usiligtributed software
frameworks. The model for local reconfiguration is equally
applicable to distributed component topologies;déetral themes
of architecture meta-protocols, validation, quieseeand policy-
driven configurators are followed. This allows tldmain
engineering principles described in the next sactiobe applied
equally across both cases.

Distributed reflective

meta‘protocol .

Distributed
Configurator

Group Membership Protocol

Local Framework et Local Framework
P

Figure 6. Distributed Frameworks

Reflective meta-protocol. Each distributed framework
maintains reflective information about the node rhers and the
component topologies on these nodes. A lightweigtdup
membership service serves as the base mechanisiistidbuting
meta-data (illustrated in figure 6); this data tibeids the view of
the system wide architecture. The group protocolistomizable:
typically different group membership overlays vslit different
domains (e.g. one for internet scale, versus orme afb-hoc
networks). The distributed reflective meta-protot®lavailable
from each instance of the framework (seen in fidi)iethe set of
available meta-operations allows manipulation @& thistributed
graph to enact adaptations. Note, the distributesméwork,
changes the local instance through the local réflecmeta-
protocol. Hence, it is a hierarchical architecture.

Validation of a distributed framework is important to ensure
that the collaborating nodes maintain a correctiémentation of
the middleware across nodes. Hence, in a similamerato local
validation, after a distributed adaptation has maksace this
update is checked through inspection of the meta-designated
nodes in the framework have a set of plug-in rthes are used to
validate the integrity of component updates acroghiple nodes.
An invalid reconfiguration can thereby be dete@ad repaired.

Centralised Quiescence. For safe dynamic reconfiguration it
is important to ensure that updates do not imgaetiritegrity of
the system. Hence, the distributed framework mesmiade safe
to adapt, i.e. placing it in a quiescent state. Wawe so far
developed a single, centralised implementatiordéaiving a safe
state in the distributed framework that is baseshupe local host
approach. A request to reconfigure the distributesnework
from a central node generates a request messaigg asich local
node to be placed in a quiescent state; this medsgyopagated

via gossiping through underlying group service. ©ra local
framework is in a quiescent state it returns afication to the
configurator node. Upon the condition that all mensbare in a
quiescent state the reconfiguration can take platae

disadvantage of the centralised approach is thatay be too
resource intensive, and may not scale suitablyai@re numbers
of nodes. Additionally, it may not be necessarpltce all nodes
in a safe-state at the same time, or have a simgle managing
the transition to a safe state. Hence, the framesvahould

supportselectable approaches to safe-state management that can

be tailored to the particular style of reconfigioat to be
performed in the environment that the frameworttéployed.

Policy-based Configurators. Distributed configurators (as
seen in figure 6) again follow the same patterniradocal
frameworks. They receive events about changingrenwiental
conditions from a context engine, select policiesd then
perform distributed reconfigurations. However, distted
frameworks may have more than one configurator. (thgre
could be one on every node). Therefore, consenmstigqols must
be used to ensure that all members of the frameagrie on the
action to perform. Our development of the reconfigion
mechanisms has so far concentrated on centralm&ifarators;
however, we are also investigating the introductiérselectable
and replaceable consensus algorithms.

3.3 Domain Engineering

We have presented Gridkit's capabilities to perfadaptation.
However, we acknowledge that the development d¢f sgbtems
that make use of these facilities is becoming iasirgly
complex. Developers must deal with a large numibeadability
decisions when planning the configurations and dyoa
reconfigurations. These include decisions such abatw
components are required, and how these componeuss be
configured and changed according to variations Ime t
environment and context. Hence, in this section digeuss a
domain engineering methodology that we have sufidgss
followed in developing different Gridkit frameworks

The overall methodology is illustrated in the wdoké
diagram of figure 7. The key contributor and irtitiais the
domain engineer; this may be one or more people héne
expert knowledge in a particular field of middleeadvehaviour,
and it is their task to create a re-usable softviEmework that
overcomes the problems of extreme heterogeneity dgmamic
change in that particular domain. For this they hmusduce a set
of artifacts that can be introduced into Gridkit.

First, the domain engineers use a range of mod#diolg known
as Genie; further information about the featured anftware
engineering benefits of these tools is availabbenf{7]. Two key
software artifacts are produced:

i) Software architecture Patterns. These describe

generalized configurations of components that are

suitable for different environment conditions iiethe
framework encounters particular
conditions then component configuration A conforgin
to the pattern is employed,
configuration B is chosen.

i) Transition Models. These describe the changes that
must be made to a component topology when a change

heterogeneity

in a different case

in environmental context is encountered. They are

typically related to the initial configuration paths (to
avoid model
condition (context or requirement change) that imegu
the reconfiguration to be enacted.

Once the framework has been modeled the tools genéhe
corresponding XML policy files i.e. the softwarechitecture
patterns become configuration policies and thestitiam models
become reconfiguration rules. These are then degdldpto a
Gridkit framework without further implementation ofe this
applies equally to local or distributed softwaranfieworks).

The domain engineers also directly design and imete
the software components that comprise the domakcifsp
middleware behaviour; this will typically be penfioed in parallel
with the modeling. Indeed we do not see this asaditional
waterfall process; typically the artifacts will efined as new
requirements are captured, and further experiehdheodomain
is discovered (e.g. once the system has been daflopnce
complete, the components can be directly deploged Gridkit
framework.

Domain
Engineers
- Component
[Modelling J [Development J

Transition
Models

Architecture

Patterns

XML
cpnfiguratio
Policies

Gridkit Framework

Figure 7. The Gridkit Self* Engineering M ethodology

It can be seen from this process that the domaginears are
shielded from many of the complexities of develgpiself*

behaviour. They do not need to code adaptationvietna nor do
they need to write reconfiguration policies. Instethe use of
models as first class entities raises the levelab$traction.
lllustrations and examples of the modeling tool8 kg described
in the service discovery and network overlay cdadiss in the
next section.

4. EVALUATION
4.1 Service Discovery Case Study

In pervasive applications there is no prior knowledf what
resources are available in the environment or wiethod should
be used to communicate with them, hence discovethy
appropriate services in these environments is ehgihg. Many

duplication). They also capture the

service discovery protocols have emerged to sdiise froblem,

with heterogeneous solutions in each environmeipte;tyfor

example, discovery protocols for fixed infrastruetuinetworks
e.g. SLP, UPnP and Jini; and discovery protocols ad-hoc

networks e.g. ALLIA [8], GSD [9] and SSD [10]. Tigeal of this

case study is to illustrate how the Gridkit selffjpaoach supports
the developer in creating a discovery framework tzan operate
in heterogeneous environments, and dynamically tadap
behaviour to changing conditions.

To advertise and discover services, a discoveryfgota
utilizes: i) a User Agent (UA) to discover servicas behalf of
clients, ii) a Service Agent (SA) to represent amdvertise
services, and iii) a Directory Agent (DA) to supipa service
directory where SAs register their local servicesl &As send
their service request. Hence, a DA is capable airgj temporal
service advertisements, matching requested servagmnst
advertisements stored in the cache and replyingetpesting
clients when a positive match is found.

4.1.1 Software Architecture Patterns

Figure 8 illustrates the core component patterrigdesl by a
domain expert to be used in development of all aliscy
protocols within the framework. Thadvertiser component: i)
broadcasts advertisement messages, i) maintainseraice
directory overlay (dependent on the protocol, aijdnianages

cached data. Theequest component constructs and sends request
messages. Theeply component constructs and sends response
messages. Theetwork component handles routing of messages

(this can be replaced by the Gridkit overlay frarogy. The

policy component enforces user preferences, applicatesds
and/or inclusive context requirements. Finally, tlache

component stores messages and advertisementstdorulse by
the protocol. More details about the requirememnts lbehaviour
capture of this pattern are described in [11].

| S§SD ADVERTISER
. GSD ADVERTISE!

POLICY —0

[

SSD REQUEST ™

o
% @~
:\J GSD REQUEST —7 'O NETWORK
N | 1 37
A
_@ o— CACHE
W ?{I}
E $SD REPLY —1
GSD REPLY —.

Figure 8. The Service Discovery Framework Pattern

Moreover, further architecture patterns were desigro support
individual discovery agent personalities on any langented
discovery platform. Figure 9 demonstrates how ttanéwork
can be configured to support either a SA or UA qeadity by
restricting the number of components to only thosguired to
provide a determined functionality.

Domain experts then developed the components (tchma
the architecture pattern) for four discovery proisc SLP,

ALLIA, GSD and SSD. Three of the component typee ar
common to all protocols, hence, only three (adserti request
and reply) need to be implemented for each proto€hls is
illustrated in figure 8; the four protocols are figanred side-by-
side and share the common components. Hence, ttierrpa
promotes re-usability across configurations and reduces the
implementation task.

=

a) SA framework configuration
T Request
ST

b) UA framework configuration

Figure 9. Service Discovery Agent Patterns

4.1.2 Transition Models

Within the domain of service discovery there are nyna
opportunities to perform self adaptation (in patée these are
node-local adaptations, performed only on an individual
participant in the discovery protocol):

0 Heterogeneity change e.g. a device moving fromxadfi
network to a wireless ad-hoc network requires ortogol
to be replaced by another e.g. SLP replaced by ALLI

0 Role change e.qg. if the system size increasess@alability
reasons) reconfigure the SA configuration to DA.

o the use of a different role strategy to save enexgy If a
node DA has low battery and it was originally a @agith
the role SA, the node should be reconfigured tawitginal
SA configuration to reduce its processing.

To design and implement such reconfigurations, doenain
engineer creates transition models that descrilve dwe of the
patterns from 4.1.1 is transformed to another patte.g. UA to
DA). To do this, an adaptation is defined as thecess of having
the system going from a given configuration © another
configuration ¢ given the conditions of the contexi.TThis is
modelled using transition diagrams. A screenshothef Genie
tool that is used to specify these is shown inrBgd0. An
adaptation policy is associated with the relatigmgarc) between
the configuration for the variant UA (Ci) and thenéiguration for
DA (Cj) for a given context Jspecified by the policy. Hence, for
each arc an XML reconfiguration rule is generatbat tis
understood by the Gridkit framework.

An example reconfiguration rule (described in psmade
rather than XML to conserve space) is:

if (RSA) then
reconfi gure(UA, SA)
end

Based upon the requirement for the protocol to adwertise
services (RSA context) and the current configurai® UA, it
transforms from UA to SA. The framework will takédnet
information from the rule and use a series of otile operations
to determine what the configuration is (protocopey and to
verify it is UA) and then performs node-local adsfun via meta-
operations to create the SA configuration.

EEReconfDiagram: ReconfDiagram._SDA, November 30, 2007, 15:44

Graph Edt View Types Format Help
BE yhi v #+lanB|x
A Rela. | TraR VPY CSY GFY
= -
Elected_DA |
RUA Elacted_DA \
>
ame= SA UA DA
ore
=] RSA NLOW,BRllery &L RUA) || !Elected_DA
n T o
de
L {Elected DA || (Low_Battery && RSA)
v
3 | | 1 >
Active: Hone: Subgraph{s): Mone | Grid: 1010 [Snep [500w @ 95% v/ ®

Figure 10. Transition Model for Service Discovery in the
Genie Tool

4.1.3 Analysis

The original hypothesis of this case study was that Gridkit
self* approach supported the developer in overcgmthe
challenges of heterogeneity and the need for dyna@ptation.
Here, we discuss the two dimensions of self-coméiian and
self-adaptation. We also investigate the costhisfapproach.

Configurability. Heterogeneous discovery platforms are

implemented to a common pattern. This simplifiese th
configuration process since the component typescandection
bindings remain the same for any protocol implemton.
Hence, based upon the operating conditions, itrégghtforward
to configure the appropriate protocol; this shiad@selopers and
users from the complexities of heterogeneity. Ferthonfiguring
minimal agent personalities brings benefits; fatamce, when a
discovery protocol with a structured distributedredtory
architecture is utilized many nodes will only neteddiscover
services, and a UA configuration can be employeendd, by
configuring individual protocols according to tr@e (UA, SA or
DA), the resources required can be reduced.

Reconfigurability. The modeling of reconfigurations hides
many of the complexities of developing adaptiveisafe. Indeed
these can be designed and employed at runtimethéegarotocols
have been deployed; this is because Gridkit framlesvprovide a
strong separation between the implementation opth&ocol and
the mechanisms for adaptation. To tackle contdxnge in
heterogeneous environments, fine-grained and cameseed
changes can be made. The complete protocol cahdrged if it
no longer functions in the environment; and fineathged role
changes can to respond to environmental contexpplication
requirement changes.

Resource Overhead. To analyze the overhead of our
framework we measured the size of the Java cldsgsmade up

the component configurations) as loaded into memdtyese
measures are illustrated in table 1; these figahesv the cost of
each individual protocol in the framework. Then measured the
cost when multiple protocols are configured. We pared these
measures against the side-by-side measurement ddfidnal
protocols (not configured in the framework). It caa seen that
resource usage is reduced (due to component réroise the
pattern properties), and that the overhead of dipteilprotocol
personality is not restrictive for resource-poowides. Hence,
tackling heterogeneity does not come with prohibittosts.

Table 1. Memory over heads of discovery framework
|
SLP-B

SSD GSD

4.2 Network Overlays Case Study

As well as needing to run effectively over an ewmreasing
range of networking technologies (e.g. large-stiaé networks,
mobile ad-hoc networks, resource impoverished gemsivorks,
satellite links, etc), distributed applications amecreasingly
demanding sophisticated and application-tailored/ises from
the underlying network (e.g. multimedia contenttriisition,
reliable multicast, etc.Network overlays provide an approach to
the virtualisation of the underlying network resm(s), making it
possible to provide a range of different networkadgstractions
including peer-to-peer groups, distributed hash lesgb
application-level multicast, etc.

In this case study we describe the developmenh@bpen
overlays framework. The goal is to demonstrate the benefits
provided by Gridkit frameworks in creating a configble and
reconfigurable framework that supports (flexiblatualization of
the network resource, the-existence of multiple (physical or)
virtual networking abstractions, and potentiallypgart the
layering of virtual network abstractions to address thellehges
of heterogeneous network environments.

4.2.1 Software Architecture Patterns
Figure 11 illustrates the general patterns for layer defined by
domain experts. This is a two-level architecture:

i) Overlay plug-ins are per-node implementations of network
overlays. For example, Figure 11 shows four ovepkyg-
ins: TBCP, Scribe, and plug-ins for a Chord Disitéxl
Hash Table (DHT) and a Chord Key-Based Routing (KBR
overlay. Multiple overlays can operate simultanépus
the framework either in mutual isolation (cf. TBGRd
Scribe) or in a stacking relationship (e.g. Scidnel Chord
DHT are both stacked atop Chord KBR).

ii) Theoverlay pattern. Overlay plug-ins are themselves ‘mini’

frameworks composed of three distinct elements that

respectively encapsulate the following areas oBbihur: i)
control behaviour, in which the node co-operates with its

peer control element on other nodes to build anthtaia
an overlay-specific virtual network topology; fgrwarding
behaviour that determines how the overlay will eout
messages over the aforementioned virtual topoldi)y;
state information that is maintained for the overlayg.e.
nearest neighbours.

I |
I i IR d ISk
‘oniro E:)war (P‘m [Owerlay Multicast] DHT]
[I IR RN
[Control Gtate Forward] [TECP][Scribe } [Chord DHT
I
1 1 1 —

IConfrol [Forward [Sfafe

Chord EBR.

TCF transport i

Clpan Cverlays Framework

Figure 11. An example configuration of the open overlays
framework

Hence, the framework can be instantiated with mpogsible
configurations to meet wide variation in heterogrreeconditions
e.g. if multicast is required in an ad-hoc netwotken an
appropriate overlay is selected (e.g. gossip-based)

4.2.2 Transition Models

The overlay pattern was designed by the domainneegs to
facilitate the complex process of adapting netwankerlay
behaviour e.g. the state component maintains ttelulited state
model (and hence this does not need to be trapsfeo new
components). The topology of the network can therchanged
by performing adistributed adaptation of control components on
each host, or similarly the routing behaviour comga can be
altered by adapting the forwarder component on &ash Hence,
the transition models are straightforward manipafet of the
overlay pattern; figure 12 illustrates one exampfea control
component change. Here, a multicast overlay fooue= poor
nodes in a fixed wireless network is adapted; thHe Bx
represents a shortest path spanning tree overlag-ipj FH
represents a fewest hop spanning tree configuralibay differ
only in their control component.

A fewest hop tree is more resilient to node faildrence, if
the failure rates of nodes in the network increaien the
shortest path tree (whose behaviour is severelgctftl by
failure) topology is changed to a fewest hop trepotogy.
However, a shortest path tree consumes less ptwace when
there is minimal failure and power is low then thetwork
reverses. In the model, the designer states theiti@n, context
event and also the style of adaptation; in thi®¢he centralized
co-ordination framework is selected to place thsvoek in a safe
state and ensure that the adaptation is coordin@tesl model is
used to generate XML policies that inform distréxiadaptation.

4.2.3 Analysis

Ease of use. The overlay patterns have been used by 1

programmers, from a range of institutions, wittfefiént levels of
programming experience, in a number of system deweént

projects (e.g., projects developing middleware feensor
networks, resource discovery, and publish-subsgiibelevelop
overlays. From observation and discussion we wble t draw
conclusions about the ease with which the approaelped
develop adaptive software. Plug-in developers gslyer
understood and followed the approach implied by eherlay

pattern, and to this extent their solutions wersilgaleployable,
configurable and adaptable. A typical overlay ping-is

developed in a time frame of 2 to 8 weeks dependingthe
complexity of the overlay. Framework users foundeiatively

easy to apply the existing profiles of the framewoHence,
despite the fact that the evidence is primarilycalogal, and that
there are areas of possible improvement, we belibae it is

reasonably safe to conclude that third parties fodlow the

approach with relative ease.

(Power=Low)&&(Failure_ate=Low

SP FH

Failure_rate:yv

[State][Forward] [SP Control]
Centralised Co-ordination \

Framework

Control

Figure 12. Topology Adaptation of an Overlay Network

Configurability. To measure the extent of the configurability
of the framework we calculated the numbers of [obssi
configurations in each of three profiles (i.e. ampty’ profile
consisting of only the framework itself, a ‘mult&taprofile for
multicast overlays, and a ‘full’ profile containingll of the
networks we have developed so far). The numberschware
summarised in the rightmost column of Table 2, ltekam an
exhaustive enumeration of all the configurationfie Tresults
show that the more complex and well-populated [@efupport a
very large number of possible configurations; etlge ‘full’
profile has 26,999; this does not mean that prograra must
write 27,000 rules, rather the approximately 30tquat for the
full profile combine to offer many potential confiigations; that is
the framework self-configures horizontal and vettic to create
these combinations.

Table 2. Configurability and overhead results

Profile |No. No. Disk mem. Disk mem Total No. of
plug- config. for config. for plug- configs
ins rules rules(KB) ins(KB) available
Empty 0 0 0 60 1
5 Multicast | 21 19 59 169 89
Full 40 31 87 252 26,999

Furthermore, the overlay pattern contributes sigaiftly to the
configurability of the framework by supporting fhgeained
configuration of individual overlays. Consider, fexample, a
Gnutella implementation with either a random-wadiséd, or a
flooding-based forwarder; or a tree overlay witboatrol element
that either contains or doesn’t contain a self-ireglgorithm. This
applies equally when the overlay pattern is decaago

Resource overhead To assess the price paid for the use
software architecture, we quantified the resouroeeriead
incurred by the open overlays framework in threpegiments.
All of these employed components from Gridkit 1&GBenCOM
v1.3.5 (available from http://gridkit.sourceforget) executing
on a Java 1.5.0.10 virtual machine on a networkedkstation
with a 3.0 GHz Pentium 4 processor, 1 Gbyte of RAKkU
running Windows XP. The experiment (see Table 2¢dtigated

of

the static storage footprint costs of each profile; i.e. the disk space

required to store the framework, components andigumation
rules. This measure is important as it illustratescost of storing
not only a starting configuration but also any rdgurations that
may subsequently be applied. It can be seen frdofeTathat the
base framework requires 60K before any plug-insadided. Note
that the configuration rules take a lot of stordégsually at least
2KBytes) because they are coded in XML.

5. RELATED WORK

There are a number of related areas of researtttistovork.
These consist of software engineering approachessetf*
software, reflective component models, reflectiveddteware,
and alternative approaches to distributed adaptadfonetwork
protocols and middleware. We now analyse these uim, t
examining how they differ from our approach.

Reflective middlewares and component models, eactél
[12], OpenORB [13] and DynamicTAO [14] came to pinence
in the past decade. Generally these provide thasmficture to
adapt; typically node-local adaptation according tocal policy.
Although potentially suitable for supporting sontasses of self-
managed systems, the dimensions of co-ordinatestritdited
adaptations have not been addressed; thereforebelieve
Gridkit promotes improved support for a wider ramgdesystems
e.g. SoS and decentralized classes of self-marsgteims.

One alternative component approach that has imgateti
the coordinated reconfiguration of decentralizeelf-smianaged
systems is k-Components [15]. Here, a k-Componentai
component with local architecture and a reflectiveta protocol
to inspect and adapt this architecture. Each k-Qorapt is then
related to a management agent; this is responfsibleonitoring
the environment and making decisions about whead@pt the
component structure. In the co-ordination dimenstistributed
agents can communicate with one another, althoegisidns to
adapt are made locally. Hence, the approach igdui only
decentralized reconfigurations, with no guarantest behaviour
is changed across a system. Our approach, is iergemore
flexible allowing the mechanism for co-ordinatechpthtion to be
tailored to the requirements e.g. centralized cedg&alized.

NecoMan [16] offers an alternative approach to dyica
reconfiguration, whose capabilities have inspirednyn of the
features of our approach. It supports safe, cosatdd updates of
distributed services, typically related to netwoptotocols.
However, it has not yet been applied in diverseliegion

environments to illustrate its full flexibility; tweever, we believe
it presents many interesting mechanisms that cbeldapplied
within our frameworks; especially our points of xilaility in
terms of consensus and quiescence. The NecoMawaghphas
been extended to also manage aspect compositiatiger(rthan
components); DYRES [17] provides flexible algorithio ensure
that aspects are safely adapted in a co-ordinasethen.

Silva et al. [18] present a framework to suppoet dlutomatic
self-adaptation of distributed application compdsenOur
approach follows some of their key ideas: monitprihe current
system state, supporting flexible algorithms forvedse
conditions, and using the configurator pattern. Q@pproach
differs by targeting frameworks of self-managingddieware
elements, as opposed to application componentaddition, we
consider an architectural view of distributed fraveks, with
principled reflection mechanisms to further suppadaptation
decisions. Hence, self-adaptation can be appliedlemand at
different levels of the distributed system, frome tmetwork
protocols, to the communication middleware, todpglications.

A common theme of related work in self* systemghiat
they provide the mechanisms to perform adaptatimwever,
they do not provide the developer with additionalitware
engineering methodologies to deal with the ined#tab
complexities that follow. This is now identified asgkey problem;
indeed three seminal papers [19][20][21] call femnengineering
approaches in this field and from the middlewamnicmnity. We
believe that the work in this paper provides ihigalutions to
overcome a subset of the identified issues, espeaiaproviding
solutions to complex adaptations.

In terms of model-based approaches, MUSIC [22]qiressa
modelling framework for the specification and maemagnt of
dynamically adaptive systems. Essentially, thiesffa different
configurator pattern where adaptations are ma@asare a utility
function is achieved. Our approach is complementand it
would be fruitful to investigate the use of thigtpen within our
flexible frameworks. MADAM [23] presents a modedin
approach conceptually similar to our approach; whgr
component configurations and transitions are medelHowever,
by capturing domain expertise and adding it to nmadee believe
systems are in a better position to handle thelpnab of SoS.

6. CONCLUSIONSAND FUTURE WORK

In this paper we have presented the challengesatieataced by
the developers of self* software: extreme hetereggnand
dynamic change. We described the Gridkit self* apph; this is
composed of the Gridkit middleware framework whaffers the
developers a flexible set of software tools forfpening node-
local and distributed adaptation, underpinned byngipled
reflective mechanisms. Combined with this, we sgggedomain
engineering approach to design and build individualdleware
functionality; the use of architecture and trawsitimodels
provides suitable abstractions to supports devefopzeate
configurable and reconfigurable systems. Case esuilustrate
the strong benefits of utilizing software patterasd domain
expertise to implement self-adapting middlewarecah be seen
that the developed service discovery and overlasnéworks are
highly configurable and can therefore respond ¢odtallenges of
heterogeneity; the ability to adapt is consideregbughout the
development lifecycle. Using domain expertise, clemp
adaptations can be rapidly developed and in masgscee-used.

We see future work in two key areas. Firstly, we ro
currently consider verification and validation ofndigurations
and adaptations. Here we envisage the use of nmgdelols and
simulators that allow developers to test and pilaate
reconfigurations before they are deployed. Secoritlis likely
that in complex systems emergent behaviour willobserved;
hence we plan to investigate this behaviour furtret extend our
engineering philosophy to cope with such problems.

7. ACKNOWLEDGMENTS

Our thanks to the ESF and Minema for funding cobntions to
this work. Gridkit has involved many; therefore tghors would
also like to thank: Geoff Coulson, Francois Tai@ayry Porter,
Danny Hughes, Phil Greenwood, Chris Cooper, Dawide) Wei
Cai, Musbah Sagar, Jason Li and Gareth Tyson &r fput.

8. REFERENCES

[1] A.P. Sage, C. D. Cuppan, “On the Systems Engingemd
Management of Systems of Systems and Federations of
Systems”, Information, Knowledge, Systems Managemen
2(4): 325-345, 2001.

[2] G. Blair, G. Coulson, L. Blair, H. Duran-Limon, Brace, R.
Moreira, N. Parlavantzas. “Reflection, Self-Awarssand
Self-Healing”, In Proceedings of Workshop on Se#faing
Systems '02, Charleston, SC, November 2002.

[3] P. Grace, D. Hughes, B. Porter, G. Blair, G. Caul$o
Taiani, “Experiences with Open Overlays: A Middlewa
Approach to Network Heterogeneity”, In Proceedinfthe
3rd ACM International EuroSys Conference '08, Giagg
Scotland, April 2008.

[4] P. Grace, G. Coulson, G. Blair, B. Porter, “Deegldfiéware
for the Divergent Grid”, Proceedings of the 6th
IFIP/ACM/USENIX International Middleware Conference
2005, Grenoble, France, November 2005.

[5] C. Szyperski, “Component Software, Beyond Object-
Oriented Programming”, ACM Press/Addison-Wesley98.9

[6] F. Kon, “Automatic Configuration of Component-Based
Distributed Systems”. PhD Thesis. University oihidis at
Urbana-Champaign, May, 2000.

[71 N. Bencomo, P. Grace, C. Flores, D. Hughes, GrBlai
“Genie: Supporting the Model Driven Development of
Reflective, Component-based Adaptive Systems” miabr
Research Demonstration, In Proceeding of the 30th
International Conference on Software Engineeri@g
2008), Leipzig, Germany, May 2008.

[8] O. Ratsimor, D. Chakraborty, A. Joshi, T. Finin |lf&
Alliance-based Service Discovery for Ad-Hoc
Environments”, In ACM Mobile Commerce Workshop, fip.
— 9, Atlanta, Georgia, USA, 2002.

[9] D. Chakraborty, A. Joshi, Y. Yesha, T. Finin, “GS®:
Novel Group-based Service Discovery Protocol for
MANETS", In 4th IEEE Conference on Mobile and Wes$
Communications Networks, Stockholm, Sweden, 2002.

[10] F. Sailhan, V. Issarny, “Scalable Service Discoveny
MANET”, In Proceedings of the Third IEEE Internatal
Conference on Pervasive Computing and Communicgtion
pp. 235 — 244, Washington, DC, USA, 2005.

[11] C. Flores Cortes, G. Blair, P. Grace, “An Adaptive
Middleware to Overcome Service Discovery Heteroggne
in Mobile Ad Hoc Environments”, IEEE Distributed 8gms
Online, July 2007.

[12] E. Bruneton, T. Coupaye, J. B. Stefani, “Recursind
dynamic software composition with sharing”, In Rredings
of the 7th ECOOP International Workshop on Componen
Oriented Programming, Malaga, Spain, June 2002.

[13] G. S. Blair, G. Coulson, A. Andersen, L. Blair, Blarke, F.
Costa, H. Duran-Limon, T. Fitzpatrick, L. Johnstén,
Moreira, N. Parlavantzas, K. Saikoski, “The Desagl
Implementation of OpenORB v2”, IEEE DS Online, Spkec
Issue on Reflective Middleware, Vol. 2, No. 6, 2001

[14] F. Kon, “Automatic Configuration of Component-Based
Distributed Systems”, PhD Thesis, University offnidiis at
Urbana-Champaign, May, 2000.

[15] J. Dowling, “The Decentralised Coordination of Self
Adaptive Components for Autonomic Distributed Sys$é,
PhD Thesis, Trinity College, Dublin, 2004.

[16] N. Janssens, S. Michiels, T. Holvoet, R. Verbaeten,
“NeCoMan: Middleware for Safe Distributed Service
Deployment in Programmable Networks”, In Proceesliof
Middleware 2004, Toronto, Canada, 2004.

[17] E. Truyen, N. Janssens, F. Sanen, W. Joosen, “&uijppo
Distributed Adaptations in Aspect-Oriented Middlea/a In
Proceedings of the 7th International ConferencAspect-
Oriented Software Development (AOSD 2008), 2008.

[18] J. Silva, M. Endler, F. Kon, “Developing Adaptive
Distributed Applications: a Framework Overview and
Experimental Results”, Proceedings of the Inteomti
Symposium on Distributed Objects and Applicatidd©A),
LNCS 2888, pp.1275-1291. Catania, Sicily, Italy vdmber,
2003.

[19] V. Issarny, M. Caporuscio, N. Georgantas, “A Pectige on
the Future of Middleware-based Software Engineériimg
Future of Software Engineering 2007 (FOSE) at ICSE
(International Conference on Software Engineering),
Minneapolis, MN, May 2007.

[20] J. Kramer and J. Magee, “Self-Managed Systems: an
Architectural Challenge”, In Future of Software Eregring
2007 (FOSE) at ICSE (International Conference ditwzoe
Engineering), Minneapolis, MN, May 2007.

[21] P. Oreizy, N. Medvidovic, R. Taylor, “Runtime sofive
adaptation: framework, approaches, and styles'30th
International Conference on Software Engineerirajptig,
Germany, May 2008.

[22] R. Rouvoy, F. Eliassen, J. Floch, S. Hallsteingergtav,
“Composing Components and Services using a Planning
based Adaptation Middleware”, In 7th International
Symposium on Software Composition, pp. 52—67, Badap
Hungary, March 2008.

[23] K. Geihs, M. U. Khan, R. Reichle, A. Solberg, S.
Hallsteinsen, S. Merral, “Modeling of component-dxhs
adaptive distributed applications”, In Proceedinfjthe
ACM Symposium on Applied Computing, Dijon, France,
April 2006.

