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ABSTRACT 
Distributed systems now encounter extreme heterogeneity in the 
form of diverse devices, network types etc., and also need to 
dynamically adapt to changing environmental conditions. Self-
adaptive middleware is ideally situated to address these 
challenges. However, developing such software is a complex task.  
In this paper, we present the Gridkit self* approach to the 
engineering of reflective middleware; this embraces state of the 
art software engineering practices, and flexible dynamic 
adaptation mechanisms to better support system developers. 
Domain specific frameworks are modeled and developed to 
enhance configurability and reconfigurability. We evaluate this 
approach using case studies in the domains of service discovery 
and network overlays. These demonstrate the benefits of the 
approach in terms of aiding and simplifying the process of 
creating self-configuring and self-adaptive software. 

Categories and Subject Descriptors 
D.2.11 [Software Engineering]: Software Architectures - 
Patterns (Reflection). 

General Terms 
Management, Design. 

Keywords 
Reflection, middleware, adaptation, heterogeneity 

1. INTRODUCTION 
As software systems become more ubiquitous a new class of 
large-scale distributed systems has emerged; known as Systems-
of-Systems (SoS) [1]. These are composed of geographically 
remote systems that are combined to deliver services that cross 
device, platform and system administration boundaries. An 
example of a SoS is a set of wireless sensor networks deployed 
across rivers to monitor flooding; these send their data to flood 
prediction models executing on a computational grid in a fixed 
infrastructure network. SoS of this type are characterised by two 

fundamental properties: 

o extreme heterogeneity in terms of interconnected devices 
(e.g. sensors, mobiles, embedded devices, PCs and clusters) 
and the communication networks between them (e.g. large-
scale fixed networks through to wireless ad-hoc networks); 

o dynamic change, i.e. the very nature of such pervasive 
systems means that the operational environment or general 
context will change over time e.g. due to user mobility, or 
the fluctuating environmental conditions of wireless 
networks.  

Given these properties, this leads to a degree of complexity 
that is orders of magnitude greater than traditional distributed 
systems, and poses new challenges in the field of dynamic and 
self-adapting distributed systems i.e. what types of adaptive 
software are required to overcome these problems, and equally 
how can the developers of such software be better supported. We 
believe that such challenges are best tackled at the middleware 
level; and in particular in the form of adaptive middleware [2]. 
Flexible, configurable and reconfigurable middleware can provide 
the necessary mechanisms and transparency to allow developers 
to create SoS that self-configure, self-optimise, self-heal and self-
manage.  

In this paper we present our experiences of developing 
Gridkit, which is a self-configuring and self-adapting middleware 
that can be deployed for applications that face the extreme 
heterogeneity described previously; the core principles of this 
work has been previously published [3, 4]; however here we focus 
on the software engineering methodology we follow to develop 
self-adaptive middleware. We believe this approach (the Gridkit 
self* approach) and the corresponding software frameworks can 
be re-used within the field of both adaptive middleware and self-
adaptive software in general.  

The Gridkit self* approach has three key elements that we 
will present in detail in this paper: 

o Reflective software frameworks. These frameworks are 
composed of components (which may be distributed). 
Reflective information is maintained about the topology and 
behaviour of the framework, this allows open introspection 
and adaptation of the contained elements to support self-
configuration and self-adaptation. 

o Flexible adaptation. Gridkit supports the developer in 
performing two types of adaptation: i) node-local 
adaptation, where software is adapted on a single node, or ii) 
distributed adaptation, where the software to be adapted may 
be spread across multiple hosts. Given the nature of SoS, 
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these will likely be performed in different conditions (e.g. in 
a local area network versus in a wireless ad-hoc network). 
Therefore, a one size fits all mechanism for adaptation is 
infeasible; hence we support the use of flexible adaptation 
mechanisms. 

o Domain Specific Engineering is the practice of collecting 
past experience in a domain in the form of reusable assets. 
Hence, domain experts design and implement software 
components and software patterns to better support 
configuration and adaptation in the face of heterogeneity and 
dynamic change within their particular domain. 

We evaluate the Gridkit self* approach by considering two 
distinct domains of middleware behaviour. We use case study 
based evaluation for both service discovery middleware and 
network overlays; these illustrate how different software artifacts 
(in terms of architectural patterns and transition models) are 
created per domain; and demonstrate the benefits of this 
philosophy in optimizing the configuration and adaptation of 
software, and also qualitatively in terms of simplifying the task of 
systems developers. 

The remainder of the paper is structured as follows. Section 
2 introduces scenarios from the field of SoS and documents and 
challenges for research in this field. Section 3 introduces the 
Gridkit self* approach. Section 4 presents the case-study based 
evaluation. Section 5 discusses related work, and finally 
concluding remarks and future work are in section 6.  

2. THE CHALLENGES OF SOS 
This section analyses two pervasive Systems-of-Systems 

scenarios that are characterized by the need for multiple 
middleware services to be deployed across a integrated, 
heterogeneous network types.  

2.1 Command & Control Systems 
This scenario is focused on forest or savannah fire fighting in 
remote, poorly resourced locations. There are two user roles 
involved:  controllers and fire fighters. Controllers manage the 
operation: they move fire fighters, issue commands, decide where 
to deploy fire sensors, and investigate real-time simulations that 
predict the spread of the fire. Fire fighters use mobile devices, on 
which graphics-based commands from controllers are displayed, 
and deploy wind speed sensor networks.  

 

 
Figure 1.  Extreme heterogeneity in the fire fighting scenario. 
 

Figure 1 illustrates a typical network configuration for this 
scenario: fire fighters form ad-hoc connections between 
themselves, sensors and on-site controllers; and infrastructure 
networks connect all controllers. Depending on the location of the 

fire, the connections between on-site and remote controllers could 
be provided by satellite, GPRS, Wireless LAN, or other network 
types. 

In terms of middleware, this scenario requires a group 
communication service to enable controllers to disseminate 
commands to fire fighters (where to move, which part of fire to 
fight, where to put sensors, etc.); and a publish-subscribe service 
is required for the collection of sensor events to be fed to the 
controllers’ fire spread simulations.  

2.2 Environmental Monitoring  
In this scenario, a river, estuary and bay are instrumented with 
sensors to monitor temperature, water level, flow rate, pollution 
levels etc. Some of these sensors are networked using Ethernet 
(e.g. sensors in tidal-defence walls), while others employ wireless 
technologies (e.g. IEEE 802.15.4 or 802.11 radios; or long-wave 
radios for underwater use). These may be mobile in the water, and 
will come into the range of fixed sensors in an ad-hoc fashion. 
Point-to-point microwave connectivity may also be used to link 
individual sensor networks to strategically placed IP gateways at 
which sensor data is collated and cached.  

Given this infrastructure, scientists in widely-dispersed 
locations selectively store data for future analysis; integrate and 
process live sensor data on their workstations; cooperatively 
visualise this data in real-time (supported by a video conferencing 
system); and use both stored and live data to computationally 
steer long running environmental simulations. Figure 2 illustrates 
a typical network configuration for this scenario. The middleware 
requirements for this scenario are: i) a data retrieval service is 
needed to collect data from the sensor networks, ii) an event 
service is needed to ‘push’ sensor data to long-running 
simulations, and iii) a streaming service is needed to support 
video conferencing between fixed workstations. 

 
 

Figure 2.  Extreme heterogeneity in the environmental 
informatics scenario. 

2.3 Analysis 
From these scenarios it can be seen that there are many challenges 
to resolve. Firstly, how can the functional middleware services 
(e.g. resource discovery, publish-subscribe and others) be 
developed and deployed across diverse environment conditions. 
Secondly, how can adaptations be performed to respond to 
changing conditions. Thirdly, how can the developers of this 
software be better supported in the face of complexity. Finally, 
how can non-functional concerns such as security and 
dependability be achieved in an end-to-end manner. In this paper, 
we aim to provide initial answers to the first three of these. 



3. THE GRIDKIT SELF* APPROACH 

3.1 The Gridkit Middleware 
Gridkit [4] is a novel reflective middleware framework that 
deploys an extensive and extensible set of middleware services 
over an infrastructure of overlay networks which it itself creates 
and manages. Gridkit is designed with a philosophy that promotes 
openness as the underlying principle in engineering self* 
behaviour; this combines three core technologies: reflection, 
software components and component frameworks [2].  

Software components act as the building blocks of 
middleware, these third party deployable elements [5] promote 
configurability, re-configurability and re-use at the middleware 
level. Reflection is then used to provide a principled mechanism 
to inspect the current system behaviour in order to inform 
decisions that dynamically adapt the component structure at run-
time. Finally, component frameworks (discussed in greater detail 
in section 3.2) constrain the design space and the scope for 
evolution within particular domains of middleware behaviour; a 
component framework is generally defined as a collection of rules 
and contracts that govern the interaction of a set of components 
[5]; in our case it further acts as the managing entity for self* 
behaviour. 

 
Figure 3. The meta-space structure of OpenCOMJ 

Gridkit is built in terms of a Java-based reflective component 
model called OpenCOMJ (http://gridkit.sourceforge.net). This 
presents a runtime kernel that supports the loading and binding of 
lightweight software components at run-time. OpenCOMJ also 
supports basic reflective operations (these can be extended, as 
described in section 3.2); figure 3 illustrates the three core meta-
space behaviors: interface, architecture, and interception. The 
interface and architecture meta-models provide structural 
reflection in terms of inspecting the interfaces of components, and 
the topology of components in terms of connected elements; the 
interception meta-model supports behavioural reflection by 
enabling the dynamic insertion of interceptors, which support the 
insertion of pre- and post- behaviour on to interfaces. 

The overall software architecture of Gridkit is illustrated in 
figure 4. Atop the component model is a set of middleware 
frameworks that can be composed to overcome heterogeneity 
across diverse conditions. The overlays framework, which is a 
distributed framework for the deployment of multiple overlay 
networks. In practice, this amounts to hosting, in a set of 
distributed overlay framework instances, a set of per-overlay 
plug-in components. This framework provides a virtualized view 

of network behaviour (in potentially many different 
environments) to allow higher level services and frameworks to 
be easily deployed without being concerned about the underlying 
network heterogeneity; section 4.2 describes the development of 
this framework in more detail. 

 Above the overlays framework is a set of further “vertical” 
frameworks that provide functionality in various orthogonal areas, 
and can optionally be included or not included on different 
devices. In brief, the frameworks are as follows: the interaction 
framework accepts multiple interaction type plug-ins (e.g. RPC, 
publish-subscribe, group communication); the service discovery 
framework accepts plug-in strategies to discover application 
services (e.g. SLP, UPnP, Salutation); the resource discovery 
framework accepts plug-in strategies to discover resources such as 
CPUs and storage (e.g. peer-to-peer search); the resource 
management and resource monitoring frameworks are 
respectively responsible for managing and monitoring resources; 
and the security framework provides general security services for 
the rest of the frameworks.  

These illustrate a central philosophy of capturing domain 
behaviour within individual frameworks in order for them to be 
developed and optimized individually by domain experts. Hence, 
the internal architectures are likely to be significantly different; 
however, the component-philosophy of Gridkit allows these 
frameworks to be composed to fit a wide range of requirements. 
This is illustrated in the case-studies of section 4, where we focus 
on the development of service discovery behaviour. 
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Figure 4. The Gridkit architecture 

3.2 Flexible Adaptation 
As previously described, Gridkit provides software frameworks as 
the tools to perform and manage adaption. However, self* 
systems will typically require a wide range of adaptation types 
e.g. adapting software within an address space compared to 
adapting software across machines in a coordinated manner; and 
these will take place in diverse operational conditions e.g. across 
PCs in a fixed network or on sensors in a wireless ad-hoc 
networks. Hence, we believe that a one-size fits all method is 
infeasible, and Gridkit therefore provides developers with 
flexible, extensible frameworks that can be tailored to the 
requirements. Here, we present example mechanisms for 
performing node-local and distributed adaptation.  

3.2.1 Node-local Adaptation 
The local software framework model (illustrated in figure 5) is 
based upon the concept of composite components. Each 
framework is an OpenCOM component that has internal 
architecture. Additionally, each framework supports the following 
dimensions for performing safe, valid reconfigurations in the local 
address space: i) an architecture meta-protocol, ii) validated 



reconfigurations, iii) quiescence management, and iv) policy 
configurators.  

 
Figure 5. Frameworks for Node-local Adaptation 

The architecture meta-protocol supports introspection and 
dynamic reconfiguration. Each framework maintains a local 
‘graph’ representing the internal structure. The protocol 
operations act on and manipulate this meta-graph; the components 
and their connections can be viewed, components can be added, 
removed, etc. Any changes to the graph are then reflected in the 
concrete components. 

Validation of reconfigurations. Providing open access to the 
structure of a system, and the ability to make run-time changes, 
increases the likelihood of system failure and opens it to third 
party attack. To guard against this, each framework exports a 
‘health check’ mechanism (illustrated in figure 5 as the required 
interface called IAccept); components encapsulating knowledge 
about valid dynamic reconfigurations for this particular 
framework are then plugged into this interface. Each 
reconfiguration is applied as a local transaction; hence once 
committed, a reconfiguration is validated such that invalid 
attempts are rolled back to the previous safe state.  

Quiescence Management. Reconfiguration operations must 
only be carried out when a framework is in a safe quiescent state. 
If a change to the configuration is made while one or more service 
calls are executing, then the results of these invocations could be 
compromised or lost. Therefore, each framework provides a 
readers/writers lock for access to the local graph. Each service 
call accesses the lock as a reader (there can be n readers using the 
lock at any time). Any reflective call accesses the lock as a writer 
(a single writer can access the lock when there are no readers). 
Interceptors are used to manage access; attached pre- and post- 
methods implement the roles of a readers/writers solution. E.g. a 
pre method accesses the lock and increments the reader count, 
while the post method decrements the count and if it is the last 
reader the lock is released for writers. 

 Configuration Management. Local frameworks use the 
configurator pattern [6] to perform adaptations. A configurator 
acts as a unit of autonomy for making decisions about when and 
how to change the framework.  This maintains a set of local 
policies, in the form of configuration patterns and adaptation 
rules; these are described in XML and use the Event-Condition-
Action style. When an event is detected (typically a context 
change from the context engine), it applies the action i.e. 
configure the framework, or perform a transition from one 

topology to another. Such actions are enacted by invoking 
operations on the architecture meta-protocol. 

3.2.2 Distributed Adaptation 
Adapting middleware may require software to be adapted across 
hosts in a co-ordinated manner. For example, to change the 
behaviour of a multicast protocol, the software at each 
participating node must be reconfigured. Here we discuss how 
Gridkit supports distributed adaptation using distributed software 
frameworks. The model for local reconfiguration is equally 
applicable to distributed component topologies; the central themes 
of architecture meta-protocols, validation, quiescence and policy-
driven configurators are followed. This allows the domain 
engineering principles described in the next section to be applied 
equally across both cases. 

 
Figure 6. Distributed Frameworks 

Reflective meta-protocol. Each distributed framework 
maintains reflective information about the node members and the 
component topologies on these nodes. A lightweight group 
membership service serves as the base mechanism for distributing 
meta-data (illustrated in figure 6); this data then builds the view of 
the system wide architecture. The group protocol is customizable: 
typically different group membership overlays will suit different 
domains (e.g. one for internet scale, versus one for ad-hoc 
networks). The distributed reflective meta-protocol is available 
from each instance of the framework (seen in figure 6); the set of 
available meta-operations allows manipulation of the distributed 
graph to enact adaptations. Note, the distributed framework, 
changes the local instance through the local reflective meta-
protocol. Hence, it is a hierarchical architecture.  

Validation of a distributed framework is important to ensure 
that the collaborating nodes maintain a correct implementation of 
the middleware across nodes. Hence, in a similar manner to local 
validation, after a distributed adaptation has taken place this 
update is checked through inspection of the meta-data. Designated 
nodes in the framework have a set of plug-in rules that are used to 
validate the integrity of component updates across multiple nodes. 
An invalid reconfiguration can thereby be detected and repaired. 

Centralised Quiescence. For safe dynamic reconfiguration it 
is important to ensure that updates do not impact the integrity of 
the system. Hence, the distributed framework must be made safe 
to adapt, i.e. placing it in a quiescent state. We have so far 
developed a single, centralised implementation for deriving a safe 
state in the distributed framework that is based upon the local host 
approach. A request to reconfigure the distributed framework 
from a central node generates a request message asking each local 
node to be placed in a quiescent state; this message is propagated 



via gossiping through underlying group service. Once a local 
framework is in a quiescent state it returns a notification to the 
configurator node. Upon the condition that all members are in a 
quiescent state the reconfiguration can take place. The 
disadvantage of the centralised approach is that it may be too 
resource intensive, and may not scale suitably for large numbers 
of nodes. Additionally, it may not be necessary to place all nodes 
in a safe-state at the same time, or have a single node managing 
the transition to a safe state. Hence, the frameworks should 
support selectable approaches to safe-state management that can 
be tailored to the particular style of reconfiguration to be 
performed in the environment that the framework is deployed.  

  Policy-based Configurators. Distributed configurators (as 
seen in figure 6) again follow the same pattern as in local 
frameworks. They receive events about changing environmental 
conditions from a context engine, select policies, and then 
perform distributed reconfigurations. However, distributed 
frameworks may have more than one configurator (e.g. there 
could be one on every node). Therefore, consensus protocols must 
be used to ensure that all members of the framework agree on the 
action to perform. Our development of the reconfiguration 
mechanisms has so far concentrated on centralised configurators; 
however, we are also investigating the introduction of selectable 
and replaceable consensus algorithms. 

3.3 Domain Engineering 
We have presented Gridkit’s capabilities to perform adaptation.  
However, we acknowledge that the development of self* systems 
that make use of these facilities is becoming increasingly 
complex. Developers must deal with a large number of variability 
decisions when planning the configurations and dynamic 
reconfigurations. These include decisions such as what 
components are required, and how these components must be 
configured and changed according to variations in the 
environment and context. Hence, in this section we discuss a 
domain engineering methodology that we have successfully 
followed in developing different Gridkit frameworks. 

The overall methodology is illustrated in the workflow 
diagram of figure 7. The key contributor and initiator is the 
domain engineer; this may be one or more people who have 
expert knowledge in a particular field of middleware behaviour, 
and it is their task to create a re-usable software framework that 
overcomes the problems of extreme heterogeneity and dynamic 
change in that particular domain. For this they must produce a set 
of artifacts that can be introduced into Gridkit. 

First, the domain engineers use a range of modeling tools known 
as Genie; further information about the features and software 
engineering benefits of these tools is available from [7]. Two key 
software artifacts are produced: 

i) Software architecture Patterns.  These describe 
generalized configurations of components that are 
suitable for different environment conditions i.e. if the 
framework encounters particular heterogeneity 
conditions then component configuration A conforming 
to the pattern is employed, in a different case 
configuration B is chosen.  

ii)  Transition Models. These describe the changes that 
must be made to a component topology when a change 

in environmental context is encountered. They are 
typically related to the initial configuration patterns (to 
avoid model duplication). They also capture the 
condition (context or requirement change) that requires 
the reconfiguration to be enacted. 

Once the framework has been modeled the tools generate the 
corresponding XML policy files i.e. the software architecture 
patterns become configuration policies and the transition models 
become reconfiguration rules. These are then deployed into a 
Gridkit framework without further implementation (note this 
applies equally to local or distributed software frameworks). 

The domain engineers also directly design and implement 
the software components that comprise the domain specific 
middleware behaviour; this will typically be performed in parallel 
with the modeling. Indeed we do not see this as a traditional 
waterfall process; typically the artifacts will be refined as new 
requirements are captured, and further experience of the domain 
is discovered (e.g. once the system has been deployed). Once 
complete, the components can be directly deployed to a Gridkit 
framework.  

 

Figure 7. The Gridkit Self* Engineering Methodology 
 

It can be seen from this process that the domain engineers are 
shielded from many of the complexities of developing self* 
behaviour. They do not need to code adaptation behaviour, nor do 
they need to write reconfiguration policies. Instead, the use of 
models as first class entities raises the level of abstraction. 
Illustrations and examples of the modeling tools will be described 
in the service discovery and network overlay case studies in the 
next section.  

 

4. EVALUATION 

4.1 Service Discovery Case Study 
In pervasive applications there is no prior knowledge of what 
resources are available in the environment or what method should 
be used to communicate with them, hence discovering the 
appropriate services in these environments is challenging. Many 



service discovery protocols have emerged to solve this problem, 
with heterogeneous solutions in each environment type; for 
example, discovery protocols for fixed infrastructure networks 
e.g. SLP, UPnP and Jini; and discovery protocols for ad-hoc 
networks e.g. ALLIA [8], GSD [9] and SSD [10]. The goal of this 
case study is to illustrate how the Gridkit self* approach supports 
the developer in creating a discovery framework that can operate 
in heterogeneous environments, and dynamically adapt it 
behaviour to changing conditions. 

To advertise and discover services, a discovery platform 
utilizes: i) a User Agent (UA) to discover services on behalf of 
clients, ii) a Service Agent (SA) to represent and advertise 
services, and iii) a Directory  Agent (DA) to support a service 
directory where SAs register their local services and UAs send 
their service request. Hence, a DA is capable of storing temporal 
service advertisements, matching requested services against 
advertisements stored in the cache and replying to requesting 
clients when a positive match is found. 

4.1.1 Software Architecture Patterns 
Figure 8 illustrates the core component pattern designed by a 
domain expert to be used in development of all discovery 
protocols within the framework. The advertiser component: i) 
broadcasts advertisement messages, ii) maintains a service 
directory overlay (dependent on the protocol, and iii) manages 
cached data. The request component constructs and sends request 
messages. The reply component constructs and sends response 
messages. The network component handles routing of messages 
(this can be replaced by the Gridkit overlay framework). The 
policy component enforces user preferences, application needs 
and/or inclusive context requirements. Finally, the cache 
component stores messages and advertisements for later use by 
the protocol. More details about the requirements and behaviour 
capture of this pattern are described in [11]. 

 

Figure 8. The Service Discovery Framework Pattern 
 

Moreover, further architecture patterns were designed to support 
individual discovery agent personalities on any implemented 
discovery platform. Figure 9 demonstrates how the framework 
can be configured to support either a SA or UA personality by 
restricting the number of components to only those required to 
provide a determined functionality.  

Domain experts then developed the components (to match 
the architecture pattern) for four discovery protocols: SLP, 

ALLIA, GSD and SSD. Three of the component types are 
common to all protocols, hence, only three (advertiser, request 
and reply) need to be implemented for each protocol. This is 
illustrated in figure 8; the four protocols are configured side-by-
side and share the common components. Hence, the pattern 
promotes re-usability across configurations and reduces the 
implementation task.  

 
a) SA framework configuration 

 

b) UA framework configuration 

Figure 9. Service Discovery Agent Patterns 
 

4.1.2 Transition Models 
Within the domain of service discovery there are many 
opportunities to perform self adaptation (in particular these are 
node-local adaptations, performed only on an individual 
participant in the discovery protocol):  

o Heterogeneity change e.g. a device moving from a fixed 
network to a wireless ad-hoc network requires one protocol 
to be replaced by another e.g. SLP replaced by ALLIA. 

o Role change e.g. if the system size increases (for scalability 
reasons) reconfigure the SA configuration to DA. 

o the use of a different role strategy to save energy e.g. If a 
node DA has low battery and it was originally a node with 
the role SA, the node should be reconfigured to its original 
SA configuration to reduce its processing. 

To design and implement such reconfigurations, the domain 
engineer creates transition models that describe how one of the 
patterns from 4.1.1 is transformed to another pattern (e.g. UA to 
DA). To do this, an adaptation is defined as the process of having 
the system going from a given configuration Ci to another 
configuration Cj given the conditions of the context Tk. This is 
modelled using transition diagrams. A screenshot of the Genie 
tool that is used to specify these is shown in figure 10. An 
adaptation policy is associated with the relationship (arc) between 
the configuration for the variant UA (Ci) and the configuration for 
DA (Cj) for a given context Tk specified by the policy. Hence, for 
each arc an XML reconfiguration rule is generated that is 
understood by the Gridkit framework. 

An example reconfiguration rule (described in pseudocode 
rather than XML to conserve space) is: 



if ( RSA ) then 

reconfigure(UA,SA) 

end 

Based upon the requirement for the protocol to now advertise 
services (RSA context) and the current configuration is UA, it 
transforms from UA to SA. The framework will take the 
information from the rule and use a series of reflective operations 
to determine what the configuration is (protocol type, and to 
verify it is UA) and then performs node-local adaptation via meta-
operations to create the SA configuration. 

 

Figure 10. Transition Model for Service Discovery in the 
Genie Tool 

 

4.1.3 Analysis 
The original hypothesis of this case study was that the Gridkit 
self* approach supported the developer in overcoming the 
challenges of heterogeneity and the need for dynamic adaptation. 
Here, we discuss the two dimensions of self-configuration and 
self-adaptation. We also investigate the costs of this approach. 

Configurability. Heterogeneous discovery platforms are 
implemented to a common pattern. This simplifies the 
configuration process since the component types and connection 
bindings remain the same for any protocol implementation. 
Hence, based upon the operating conditions, it is straightforward 
to configure the appropriate protocol; this shields developers and 
users from the complexities of heterogeneity. Further, configuring 
minimal agent personalities brings benefits; for instance, when a 
discovery protocol with a structured distributed directory 
architecture is utilized many nodes will only need to discover 
services, and a UA configuration can be employed. Hence, by 
configuring individual protocols according to the role (UA, SA or 
DA), the resources required can be reduced. 

Reconfigurability. The modeling of reconfigurations hides 
many of the complexities of developing adaptive software. Indeed 
these can be designed and employed at runtime after the protocols 
have been deployed; this is because Gridkit frameworks provide a 
strong separation between the implementation of the protocol and 
the mechanisms for adaptation.  To tackle context change in 
heterogeneous environments, fine-grained and coarse-grained 
changes can be made. The complete protocol can be changed if it 
no longer functions in the environment; and finer-grained role 
changes can to respond to environmental context or application 
requirement changes. 

Resource Overhead. To analyze the overhead of our 
framework we measured the size of the Java classes (that made up 

the component configurations) as loaded into memory. These 
measures are illustrated in table 1; these figures show the cost of 
each individual protocol in the framework. Then we measured the 
cost when multiple protocols are configured. We compared these 
measures against the side-by-side measurement of individual 
protocols (not configured in the framework). It can be seen that 
resource usage is reduced (due to component re-use from the 
pattern properties), and that the overhead of a multiple protocol 
personality is not restrictive for resource-poor devices. Hence, 
tackling heterogeneity does not come with prohibitive costs. 

Table 1. Memory overheads of discovery framework 

 

4.2 Network Overlays Case Study 
As well as needing to run effectively over an ever-increasing 
range of networking technologies (e.g. large-scale fixed networks, 
mobile ad-hoc networks, resource impoverished sensor networks, 
satellite links, etc), distributed applications are increasingly 
demanding sophisticated and application-tailored services from 
the underlying network (e.g. multimedia content distribution, 
reliable multicast, etc.) Network overlays provide an approach to 
the virtualisation of the underlying network resource(s), making it 
possible to provide a range of different networking abstractions 
including peer-to-peer groups, distributed hash tables, 
application-level multicast, etc.  

In this case study we describe the development of the open 
overlays framework. The goal is to demonstrate the benefits 
provided by Gridkit frameworks in creating a configurable and 
reconfigurable framework that supports (flexible) virtualization of 
the network resource, the co-existence of multiple (physical or) 
virtual networking abstractions, and potentially support the 
layering of virtual network abstractions to address the challenges 
of heterogeneous network environments. 

4.2.1 Software Architecture Patterns 
Figure 11 illustrates the general patterns for overlays defined by 
domain experts. This is a two-level architecture:  

i) Overlay plug-ins are per-node implementations of network 
overlays. For example, Figure 11 shows four overlay plug-
ins: TBCP, Scribe, and plug-ins for a Chord Distributed 
Hash Table (DHT) and a Chord Key-Based Routing (KBR) 
overlay. Multiple overlays can operate simultaneously in 
the framework either in mutual isolation (cf. TBCP and 
Scribe) or in a stacking relationship (e.g. Scribe and Chord 
DHT are both stacked atop Chord KBR). 

ii)  The overlay pattern. Overlay plug-ins are themselves ‘mini’ 
frameworks composed of three distinct elements that 
respectively encapsulate the following areas of behaviour: i) 
control behaviour, in which the node co-operates with its 



peer control element on other nodes to build and maintain 
an overlay-specific virtual network topology; ii) forwarding 
behaviour that determines how the overlay will route 
messages over the aforementioned virtual topology; iii) 
state information that is maintained for the overlay; e.g. 
nearest neighbours. 

 

Figure 11. An example configuration of the open overlays 
framework 

Hence, the framework can be instantiated with many possible 
configurations to meet wide variation in heterogeneous conditions 
e.g. if multicast is required in an ad-hoc network, then an 
appropriate overlay is selected (e.g. gossip-based). 

4.2.2 Transition Models 
The overlay pattern was designed by the domain engineers to 
facilitate the complex process of adapting network overlay 
behaviour e.g. the state component maintains the distributed state 
model (and hence this does not need to be transferred to new 
components). The topology of the network can then be changed 
by performing a distributed adaptation of control components on 
each host, or similarly the routing behaviour component can be 
altered by adapting the forwarder component on each host. Hence, 
the transition models are straightforward manipulations of the 
overlay pattern; figure 12 illustrates one example of a control 
component change. Here, a multicast overlay for resource poor 
nodes in a fixed wireless network is adapted; the SP box 
represents a shortest path spanning tree overlay plug-in; FH 
represents a fewest hop spanning tree configuration. They differ 
only in their control component. 

A fewest hop tree is more resilient to node failure; hence, if 
the failure rates of nodes in the network increases then the 
shortest path tree (whose behaviour is severely affected by 
failure) topology is changed to a fewest hop tree topology. 
However, a shortest path tree consumes less power, hence when 
there is minimal failure and power is low then the network 
reverses. In the model, the designer states the transition, context 
event and also the style of adaptation; in this case the centralized 
co-ordination framework is selected to place the network in a safe 
state and ensure that the adaptation is coordinated. The model is 
used to generate XML policies that inform distributed adaptation. 

4.2.3 Analysis 
Ease of use. The overlay patterns have been used by 15 
programmers, from a range of institutions, with different levels of 
programming experience, in a number of system development 

projects (e.g., projects developing middleware for sensor 
networks, resource discovery, and publish-subscribe) to develop 
overlays. From observation and discussion we were able to draw 
conclusions about the ease with which the approach helped 
develop adaptive software. Plug-in developers generally 
understood and followed the approach implied by the overlay 
pattern, and to this extent their solutions were easily deployable, 
configurable and adaptable. A typical overlay plug-in is 
developed in a time frame of 2 to 8 weeks depending on the 
complexity of the overlay. Framework users found it relatively 
easy to apply the existing profiles of the framework. Hence, 
despite the fact that the evidence is primarily anecdotal, and that 
there are areas of possible improvement, we believe that it is 
reasonably safe to conclude that third parties can follow the 
approach with relative ease.  

 

Figure 12. Topology Adaptation of an Overlay Network 
 

Configurability. To measure the extent of the configurability 
of the framework we calculated the numbers of possible 
configurations in each of three profiles (i.e. an ‘empty’ profile 
consisting of only the framework itself, a ‘multicast’ profile for 
multicast overlays, and a ‘full’ profile containing all of the 
networks we have developed so far). The numbers, which are 
summarised in the rightmost column of Table 2, result from an 
exhaustive enumeration of all the configurations. The results 
show that the more complex and well-populated profiles support a 
very large number of possible configurations; e.g. the ‘full’ 
profile has 26,999; this does not mean that programmers must 
write 27,000 rules, rather the approximately 30 patterns for the 
full profile combine to offer many potential configurations; that is 
the framework self-configures horizontal and vertically to create 
these combinations.  

Table 2. Configurability and overhead results 

Profile No. 
plug-
ins 

No. 
config. 
rules 

Disk mem. 
for config. 
rules (KB) 

Disk mem 
for plug-
ins (KB) 

Total No. of 
configs 
available 

Empty 0 0 0 60 1 

Multicast 21 19 59 169 89 

Full 40 31 87 252 26,999 

State SP Control Forward 

SP FH 

Failure_rate=High 

Centralised Co-ordination 
Framework FH 

 Control 

(Power=Low)&&(Failure_rate=Low) 



 

Furthermore, the overlay pattern contributes significantly to the 
configurability of the framework by supporting fine-grained 
configuration of individual overlays. Consider, for example, a 
Gnutella implementation with either a random-walk-based, or a 
flooding-based forwarder; or a tree overlay with a control element 
that either contains or doesn’t contain a self-repair algorithm. This 
applies equally when the overlay pattern is decomposed.  

Resource overhead To assess the price paid for the use of 
software architecture, we quantified the resource overhead 
incurred by the open overlays framework in three experiments. 
All of these employed components from Gridkit 1.5/ OpenCOM 
v1.3.5 (available from http://gridkit.sourceforge.net), executing 
on a Java 1.5.0.10 virtual machine on a networked workstation 
with a 3.0 GHz Pentium 4 processor, 1 Gbyte of RAM and 
running Windows XP. The experiment (see Table 2) investigated 
the static storage footprint costs of each profile; i.e. the disk space 
required to store the framework, components and configuration 
rules. This measure is important as it illustrates the cost of storing 
not only a starting configuration but also any reconfigurations that 
may subsequently be applied. It can be seen from Table 2 that the 
base framework requires 60K before any plug-ins are added. Note 
that the configuration rules take a lot of storage (usually at least 
2KBytes) because they are coded in XML. 

5. RELATED WORK 
There are a number of related areas of research to this work. 

These consist of software engineering approaches to self* 
software, reflective component models, reflective middleware, 
and alternative approaches to distributed adaptation of network 
protocols and middleware. We now analyse these in turn, 
examining how they differ from our approach. 

Reflective middlewares and component models, e.g. Fractal 
[12], OpenORB [13] and DynamicTAO [14] came to prominence 
in the past decade. Generally these provide the infrastructure to 
adapt; typically node-local adaptation according to a local policy. 
Although potentially suitable for supporting some classes of self-
managed systems, the dimensions of co-ordinated, distributed 
adaptations have not been addressed; therefore, we believe 
Gridkit promotes improved support for a wider range of systems 
e.g. SoS and decentralized classes of self-managed systems.  

One alternative component approach that has investigated 
the coordinated reconfiguration of decentralized, self-managed 
systems is k-Components [15]. Here, a k-Component is a 
component with local architecture and a reflective meta protocol 
to inspect and adapt this architecture. Each k-Component is then 
related to a management agent; this is responsible for monitoring 
the environment and making decisions about when to adapt the 
component structure. In the co-ordination dimension, distributed 
agents can communicate with one another, although decisions to 
adapt are made locally. Hence, the approach is suited to only 
decentralized reconfigurations, with no guarantee that behaviour 
is changed across a system. Our approach, is in general more 
flexible allowing the mechanism for co-ordinated adaptation to be 
tailored to the requirements e.g. centralized or decentralized. 

NecoMan [16] offers an alternative approach to dynamic 
reconfiguration, whose capabilities have inspired many of the 
features of our approach. It supports safe, co-ordinated updates of 
distributed services, typically related to network protocols. 
However, it has not yet been applied in diverse application 

environments to illustrate its full flexibility; however, we believe 
it presents many interesting mechanisms that could be applied 
within our frameworks; especially our points of flexibility in 
terms of consensus and quiescence. The NecoMan approach has 
been extended to also manage aspect compositions (rather than 
components); DyRES [17] provides flexible algorithms to ensure 
that aspects are safely adapted in a co-ordinated manner.  

Silva et al. [18] present a framework to support the automatic 
self-adaptation of distributed application components. Our 
approach follows some of their key ideas: monitoring the current 
system state, supporting flexible algorithms for diverse 
conditions, and using the configurator pattern. Our approach 
differs by targeting frameworks of self-managing middleware 
elements, as opposed to application components. In addition, we 
consider an architectural view of distributed frameworks, with 
principled reflection mechanisms to further support adaptation 
decisions. Hence, self-adaptation can be applied on demand at 
different levels of the distributed system, from the network 
protocols, to the communication middleware, to the applications. 

A common theme of related work in self* systems is that 
they provide the mechanisms to perform adaptation; however, 
they do not provide the developer with additional software 
engineering methodologies to deal with the inevitable 
complexities that follow. This is now identified as a key problem; 
indeed three seminal papers [19][20][21] call for new engineering 
approaches in this field and from the middleware community. We 
believe that the work in this paper provides initial solutions to 
overcome a subset of the identified issues, especially in providing 
solutions to complex adaptations. 

In terms of model-based approaches, MUSIC [22] presents a 
modelling framework for the specification and management of 
dynamically adaptive systems. Essentially, this offers a different 
configurator pattern where adaptations are made to ensure a utility 
function is achieved. Our approach is complementary, and it 
would be fruitful to investigate the use of this pattern within our 
flexible frameworks. MADAM [23] presents a modelling 
approach conceptually similar to our approach; whereby 
component configurations and transitions are modelled. However, 
by capturing domain expertise and adding it to models, we believe 
systems are in a better position to handle the problems of SoS. 

6. CONCLUSIONS AND FUTURE WORK 
In this paper we have presented the challenges that are faced by 
the developers of self* software: extreme heterogeneity and 
dynamic change. We described the Gridkit self* approach; this is 
composed of the Gridkit middleware framework which offers the 
developers a flexible set of software tools for performing node-
local and distributed adaptation, underpinned by principled 
reflective mechanisms. Combined with this, we suggest a domain 
engineering approach to design and build individual middleware 
functionality; the use of architecture and transition models 
provides suitable abstractions to supports developers create 
configurable and reconfigurable systems. Case studies illustrate 
the strong benefits of utilizing software patterns and domain 
expertise to implement self-adapting middleware. It can be seen 
that the developed service discovery and overlay frameworks are 
highly configurable and can therefore respond to the challenges of 
heterogeneity; the ability to adapt is considered throughout the 
development lifecycle. Using domain expertise, complex 
adaptations can be rapidly developed and in many cases re-used. 



We see future work in two key areas. Firstly, we do not 
currently consider verification and validation of configurations 
and adaptations. Here we envisage the use of modeling tools and 
simulators that allow developers to test and pre-validate 
reconfigurations before they are deployed. Secondly, it is likely 
that in complex systems emergent behaviour will be observed; 
hence we plan to investigate this behaviour further and extend our 
engineering philosophy to cope with such problems.  
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