
Engineering Complex Adaptations in Highly
Heterogeneous Distributed Systems

Paul Grace, Gordon S. Blair, Carlos Flores Cortes, Nelly Bencomo
Computing Department

Lancaster University
Lancaster, UK

{gracep, gordon, c.florescortes, bencomo}@comp.lancs.ac.uk

ABSTRACT
Distributed systems now encounter extreme heterogeneity in the
form of diverse devices, network types etc., and also need to
dynamically adapt to changing environmental conditions. Self-
adaptive middleware is ideally situated to address these
challenges. However, developing such software is a complex task.
In this paper, we present the Gridkit self* approach to the
engineering of reflective middleware; this embraces state of the
art software engineering practices, and flexible dynamic
adaptation mechanisms to better support system developers.
Domain specific frameworks are modeled and developed to
enhance configurability and reconfigurability. We evaluate this
approach using case studies in the domains of service discovery
and network overlays. These demonstrate the benefits of the
approach in terms of aiding and simplifying the process of
creating self-configuring and self-adaptive software.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures -
Patterns (Reflection).

General Terms
Management, Design.

Keywords
Reflection, middleware, adaptation, heterogeneity

1. INTRODUCTION
As software systems become more ubiquitous a new class of
large-scale distributed systems has emerged; known as Systems-
of-Systems (SoS) [1]. These are composed of geographically
remote systems that are combined to deliver services that cross
device, platform and system administration boundaries. An
example of a SoS is a set of wireless sensor networks deployed
across rivers to monitor flooding; these send their data to flood
prediction models executing on a computational grid in a fixed
infrastructure network. SoS of this type are characterised by two

fundamental properties:

o extreme heterogeneity in terms of interconnected devices
(e.g. sensors, mobiles, embedded devices, PCs and clusters)
and the communication networks between them (e.g. large-
scale fixed networks through to wireless ad-hoc networks);

o dynamic change, i.e. the very nature of such pervasive
systems means that the operational environment or general
context will change over time e.g. due to user mobility, or
the fluctuating environmental conditions of wireless
networks.

Given these properties, this leads to a degree of complexity
that is orders of magnitude greater than traditional distributed
systems, and poses new challenges in the field of dynamic and
self-adapting distributed systems i.e. what types of adaptive
software are required to overcome these problems, and equally
how can the developers of such software be better supported. We
believe that such challenges are best tackled at the middleware
level; and in particular in the form of adaptive middleware [2].
Flexible, configurable and reconfigurable middleware can provide
the necessary mechanisms and transparency to allow developers
to create SoS that self-configure, self-optimise, self-heal and self-
manage.

In this paper we present our experiences of developing
Gridkit, which is a self-configuring and self-adapting middleware
that can be deployed for applications that face the extreme
heterogeneity described previously; the core principles of this
work has been previously published [3, 4]; however here we focus
on the software engineering methodology we follow to develop
self-adaptive middleware. We believe this approach (the Gridkit
self* approach) and the corresponding software frameworks can
be re-used within the field of both adaptive middleware and self-
adaptive software in general.

The Gridkit self* approach has three key elements that we
will present in detail in this paper:

o Reflective software frameworks. These frameworks are
composed of components (which may be distributed).
Reflective information is maintained about the topology and
behaviour of the framework, this allows open introspection
and adaptation of the contained elements to support self-
configuration and self-adaptation.

o Flexible adaptation. Gridkit supports the developer in
performing two types of adaptation: i) node-local
adaptation, where software is adapted on a single node, or ii)
distributed adaptation, where the software to be adapted may
be spread across multiple hosts. Given the nature of SoS,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Autonomics 2008, September 23 - 25, 2008, Turin, Italy.
Copyright © 2008 ICST ISBN # 978-963-9799-34-9.

these will likely be performed in different conditions (e.g. in
a local area network versus in a wireless ad-hoc network).
Therefore, a one size fits all mechanism for adaptation is
infeasible; hence we support the use of flexible adaptation
mechanisms.

o Domain Specific Engineering is the practice of collecting
past experience in a domain in the form of reusable assets.
Hence, domain experts design and implement software
components and software patterns to better support
configuration and adaptation in the face of heterogeneity and
dynamic change within their particular domain.

We evaluate the Gridkit self* approach by considering two
distinct domains of middleware behaviour. We use case study
based evaluation for both service discovery middleware and
network overlays; these illustrate how different software artifacts
(in terms of architectural patterns and transition models) are
created per domain; and demonstrate the benefits of this
philosophy in optimizing the configuration and adaptation of
software, and also qualitatively in terms of simplifying the task of
systems developers.

The remainder of the paper is structured as follows. Section
2 introduces scenarios from the field of SoS and documents and
challenges for research in this field. Section 3 introduces the
Gridkit self* approach. Section 4 presents the case-study based
evaluation. Section 5 discusses related work, and finally
concluding remarks and future work are in section 6.

2. THE CHALLENGES OF SOS
This section analyses two pervasive Systems-of-Systems

scenarios that are characterized by the need for multiple
middleware services to be deployed across a integrated,
heterogeneous network types.

2.1 Command & Control Systems
This scenario is focused on forest or savannah fire fighting in
remote, poorly resourced locations. There are two user roles
involved: controllers and fire fighters. Controllers manage the
operation: they move fire fighters, issue commands, decide where
to deploy fire sensors, and investigate real-time simulations that
predict the spread of the fire. Fire fighters use mobile devices, on
which graphics-based commands from controllers are displayed,
and deploy wind speed sensor networks.

Figure 1. Extreme heterogeneity in the fire fighting scenario.

Figure 1 illustrates a typical network configuration for this
scenario: fire fighters form ad-hoc connections between
themselves, sensors and on-site controllers; and infrastructure
networks connect all controllers. Depending on the location of the

fire, the connections between on-site and remote controllers could
be provided by satellite, GPRS, Wireless LAN, or other network
types.

In terms of middleware, this scenario requires a group
communication service to enable controllers to disseminate
commands to fire fighters (where to move, which part of fire to
fight, where to put sensors, etc.); and a publish-subscribe service
is required for the collection of sensor events to be fed to the
controllers’ fire spread simulations.

2.2 Environmental Monitoring
In this scenario, a river, estuary and bay are instrumented with
sensors to monitor temperature, water level, flow rate, pollution
levels etc. Some of these sensors are networked using Ethernet
(e.g. sensors in tidal-defence walls), while others employ wireless
technologies (e.g. IEEE 802.15.4 or 802.11 radios; or long-wave
radios for underwater use). These may be mobile in the water, and
will come into the range of fixed sensors in an ad-hoc fashion.
Point-to-point microwave connectivity may also be used to link
individual sensor networks to strategically placed IP gateways at
which sensor data is collated and cached.

Given this infrastructure, scientists in widely-dispersed
locations selectively store data for future analysis; integrate and
process live sensor data on their workstations; cooperatively
visualise this data in real-time (supported by a video conferencing
system); and use both stored and live data to computationally
steer long running environmental simulations. Figure 2 illustrates
a typical network configuration for this scenario. The middleware
requirements for this scenario are: i) a data retrieval service is
needed to collect data from the sensor networks, ii) an event
service is needed to ‘push’ sensor data to long-running
simulations, and iii) a streaming service is needed to support
video conferencing between fixed workstations.

Figure 2. Extreme heterogeneity in the environmental
informatics scenario.

2.3 Analysis
From these scenarios it can be seen that there are many challenges
to resolve. Firstly, how can the functional middleware services
(e.g. resource discovery, publish-subscribe and others) be
developed and deployed across diverse environment conditions.
Secondly, how can adaptations be performed to respond to
changing conditions. Thirdly, how can the developers of this
software be better supported in the face of complexity. Finally,
how can non-functional concerns such as security and
dependability be achieved in an end-to-end manner. In this paper,
we aim to provide initial answers to the first three of these.

3. THE GRIDKIT SELF* APPROACH

3.1 The Gridkit Middleware
Gridkit [4] is a novel reflective middleware framework that
deploys an extensive and extensible set of middleware services
over an infrastructure of overlay networks which it itself creates
and manages. Gridkit is designed with a philosophy that promotes
openness as the underlying principle in engineering self*
behaviour; this combines three core technologies: reflection,
software components and component frameworks [2].

Software components act as the building blocks of
middleware, these third party deployable elements [5] promote
configurability, re-configurability and re-use at the middleware
level. Reflection is then used to provide a principled mechanism
to inspect the current system behaviour in order to inform
decisions that dynamically adapt the component structure at run-
time. Finally, component frameworks (discussed in greater detail
in section 3.2) constrain the design space and the scope for
evolution within particular domains of middleware behaviour; a
component framework is generally defined as a collection of rules
and contracts that govern the interaction of a set of components
[5]; in our case it further acts as the managing entity for self*
behaviour.

Figure 3. The meta-space structure of OpenCOMJ

Gridkit is built in terms of a Java-based reflective component
model called OpenCOMJ (http://gridkit.sourceforge.net). This
presents a runtime kernel that supports the loading and binding of
lightweight software components at run-time. OpenCOMJ also
supports basic reflective operations (these can be extended, as
described in section 3.2); figure 3 illustrates the three core meta-
space behaviors: interface, architecture, and interception. The
interface and architecture meta-models provide structural
reflection in terms of inspecting the interfaces of components, and
the topology of components in terms of connected elements; the
interception meta-model supports behavioural reflection by
enabling the dynamic insertion of interceptors, which support the
insertion of pre- and post- behaviour on to interfaces.

The overall software architecture of Gridkit is illustrated in
figure 4. Atop the component model is a set of middleware
frameworks that can be composed to overcome heterogeneity
across diverse conditions. The overlays framework, which is a
distributed framework for the deployment of multiple overlay
networks. In practice, this amounts to hosting, in a set of
distributed overlay framework instances, a set of per-overlay
plug-in components. This framework provides a virtualized view

of network behaviour (in potentially many different
environments) to allow higher level services and frameworks to
be easily deployed without being concerned about the underlying
network heterogeneity; section 4.2 describes the development of
this framework in more detail.

 Above the overlays framework is a set of further “vertical”
frameworks that provide functionality in various orthogonal areas,
and can optionally be included or not included on different
devices. In brief, the frameworks are as follows: the interaction
framework accepts multiple interaction type plug-ins (e.g. RPC,
publish-subscribe, group communication); the service discovery
framework accepts plug-in strategies to discover application
services (e.g. SLP, UPnP, Salutation); the resource discovery
framework accepts plug-in strategies to discover resources such as
CPUs and storage (e.g. peer-to-peer search); the resource
management and resource monitoring frameworks are
respectively responsible for managing and monitoring resources;
and the security framework provides general security services for
the rest of the frameworks.

These illustrate a central philosophy of capturing domain
behaviour within individual frameworks in order for them to be
developed and optimized individually by domain experts. Hence,
the internal architectures are likely to be significantly different;
however, the component-philosophy of Gridkit allows these
frameworks to be composed to fit a wide range of requirements.
This is illustrated in the case-studies of section 4, where we focus
on the development of service discovery behaviour.

OpenCOM component model
runtime

Overlays framework

Interaction Service
discovery

Resource
discovery

Resource
mgmt

Resource
monitoring Security

Web services
API

Figure 4. The Gridkit architecture

3.2 Flexible Adaptation
As previously described, Gridkit provides software frameworks as
the tools to perform and manage adaption. However, self*
systems will typically require a wide range of adaptation types
e.g. adapting software within an address space compared to
adapting software across machines in a coordinated manner; and
these will take place in diverse operational conditions e.g. across
PCs in a fixed network or on sensors in a wireless ad-hoc
networks. Hence, we believe that a one-size fits all method is
infeasible, and Gridkit therefore provides developers with
flexible, extensible frameworks that can be tailored to the
requirements. Here, we present example mechanisms for
performing node-local and distributed adaptation.

3.2.1 Node-local Adaptation
The local software framework model (illustrated in figure 5) is
based upon the concept of composite components. Each
framework is an OpenCOM component that has internal
architecture. Additionally, each framework supports the following
dimensions for performing safe, valid reconfigurations in the local
address space: i) an architecture meta-protocol, ii) validated

reconfigurations, iii) quiescence management, and iv) policy
configurators.

Figure 5. Frameworks for Node-local Adaptation

The architecture meta-protocol supports introspection and
dynamic reconfiguration. Each framework maintains a local
‘graph’ representing the internal structure. The protocol
operations act on and manipulate this meta-graph; the components
and their connections can be viewed, components can be added,
removed, etc. Any changes to the graph are then reflected in the
concrete components.

Validation of reconfigurations. Providing open access to the
structure of a system, and the ability to make run-time changes,
increases the likelihood of system failure and opens it to third
party attack. To guard against this, each framework exports a
‘health check’ mechanism (illustrated in figure 5 as the required
interface called IAccept); components encapsulating knowledge
about valid dynamic reconfigurations for this particular
framework are then plugged into this interface. Each
reconfiguration is applied as a local transaction; hence once
committed, a reconfiguration is validated such that invalid
attempts are rolled back to the previous safe state.

Quiescence Management. Reconfiguration operations must
only be carried out when a framework is in a safe quiescent state.
If a change to the configuration is made while one or more service
calls are executing, then the results of these invocations could be
compromised or lost. Therefore, each framework provides a
readers/writers lock for access to the local graph. Each service
call accesses the lock as a reader (there can be n readers using the
lock at any time). Any reflective call accesses the lock as a writer
(a single writer can access the lock when there are no readers).
Interceptors are used to manage access; attached pre- and post-
methods implement the roles of a readers/writers solution. E.g. a
pre method accesses the lock and increments the reader count,
while the post method decrements the count and if it is the last
reader the lock is released for writers.

 Configuration Management. Local frameworks use the
configurator pattern [6] to perform adaptations. A configurator
acts as a unit of autonomy for making decisions about when and
how to change the framework. This maintains a set of local
policies, in the form of configuration patterns and adaptation
rules; these are described in XML and use the Event-Condition-
Action style. When an event is detected (typically a context
change from the context engine), it applies the action i.e.
configure the framework, or perform a transition from one

topology to another. Such actions are enacted by invoking
operations on the architecture meta-protocol.

3.2.2 Distributed Adaptation
Adapting middleware may require software to be adapted across
hosts in a co-ordinated manner. For example, to change the
behaviour of a multicast protocol, the software at each
participating node must be reconfigured. Here we discuss how
Gridkit supports distributed adaptation using distributed software
frameworks. The model for local reconfiguration is equally
applicable to distributed component topologies; the central themes
of architecture meta-protocols, validation, quiescence and policy-
driven configurators are followed. This allows the domain
engineering principles described in the next section to be applied
equally across both cases.

Figure 6. Distributed Frameworks

Reflective meta-protocol. Each distributed framework
maintains reflective information about the node members and the
component topologies on these nodes. A lightweight group
membership service serves as the base mechanism for distributing
meta-data (illustrated in figure 6); this data then builds the view of
the system wide architecture. The group protocol is customizable:
typically different group membership overlays will suit different
domains (e.g. one for internet scale, versus one for ad-hoc
networks). The distributed reflective meta-protocol is available
from each instance of the framework (seen in figure 6); the set of
available meta-operations allows manipulation of the distributed
graph to enact adaptations. Note, the distributed framework,
changes the local instance through the local reflective meta-
protocol. Hence, it is a hierarchical architecture.

Validation of a distributed framework is important to ensure
that the collaborating nodes maintain a correct implementation of
the middleware across nodes. Hence, in a similar manner to local
validation, after a distributed adaptation has taken place this
update is checked through inspection of the meta-data. Designated
nodes in the framework have a set of plug-in rules that are used to
validate the integrity of component updates across multiple nodes.
An invalid reconfiguration can thereby be detected and repaired.

Centralised Quiescence. For safe dynamic reconfiguration it
is important to ensure that updates do not impact the integrity of
the system. Hence, the distributed framework must be made safe
to adapt, i.e. placing it in a quiescent state. We have so far
developed a single, centralised implementation for deriving a safe
state in the distributed framework that is based upon the local host
approach. A request to reconfigure the distributed framework
from a central node generates a request message asking each local
node to be placed in a quiescent state; this message is propagated

via gossiping through underlying group service. Once a local
framework is in a quiescent state it returns a notification to the
configurator node. Upon the condition that all members are in a
quiescent state the reconfiguration can take place. The
disadvantage of the centralised approach is that it may be too
resource intensive, and may not scale suitably for large numbers
of nodes. Additionally, it may not be necessary to place all nodes
in a safe-state at the same time, or have a single node managing
the transition to a safe state. Hence, the frameworks should
support selectable approaches to safe-state management that can
be tailored to the particular style of reconfiguration to be
performed in the environment that the framework is deployed.

 Policy-based Configurators. Distributed configurators (as
seen in figure 6) again follow the same pattern as in local
frameworks. They receive events about changing environmental
conditions from a context engine, select policies, and then
perform distributed reconfigurations. However, distributed
frameworks may have more than one configurator (e.g. there
could be one on every node). Therefore, consensus protocols must
be used to ensure that all members of the framework agree on the
action to perform. Our development of the reconfiguration
mechanisms has so far concentrated on centralised configurators;
however, we are also investigating the introduction of selectable
and replaceable consensus algorithms.

3.3 Domain Engineering
We have presented Gridkit’s capabilities to perform adaptation.
However, we acknowledge that the development of self* systems
that make use of these facilities is becoming increasingly
complex. Developers must deal with a large number of variability
decisions when planning the configurations and dynamic
reconfigurations. These include decisions such as what
components are required, and how these components must be
configured and changed according to variations in the
environment and context. Hence, in this section we discuss a
domain engineering methodology that we have successfully
followed in developing different Gridkit frameworks.

The overall methodology is illustrated in the workflow
diagram of figure 7. The key contributor and initiator is the
domain engineer; this may be one or more people who have
expert knowledge in a particular field of middleware behaviour,
and it is their task to create a re-usable software framework that
overcomes the problems of extreme heterogeneity and dynamic
change in that particular domain. For this they must produce a set
of artifacts that can be introduced into Gridkit.

First, the domain engineers use a range of modeling tools known
as Genie; further information about the features and software
engineering benefits of these tools is available from [7]. Two key
software artifacts are produced:

i) Software architecture Patterns. These describe
generalized configurations of components that are
suitable for different environment conditions i.e. if the
framework encounters particular heterogeneity
conditions then component configuration A conforming
to the pattern is employed, in a different case
configuration B is chosen.

ii) Transition Models. These describe the changes that
must be made to a component topology when a change

in environmental context is encountered. They are
typically related to the initial configuration patterns (to
avoid model duplication). They also capture the
condition (context or requirement change) that requires
the reconfiguration to be enacted.

Once the framework has been modeled the tools generate the
corresponding XML policy files i.e. the software architecture
patterns become configuration policies and the transition models
become reconfiguration rules. These are then deployed into a
Gridkit framework without further implementation (note this
applies equally to local or distributed software frameworks).

The domain engineers also directly design and implement
the software components that comprise the domain specific
middleware behaviour; this will typically be performed in parallel
with the modeling. Indeed we do not see this as a traditional
waterfall process; typically the artifacts will be refined as new
requirements are captured, and further experience of the domain
is discovered (e.g. once the system has been deployed). Once
complete, the components can be directly deployed to a Gridkit
framework.

Figure 7. The Gridkit Self* Engineering Methodology

It can be seen from this process that the domain engineers are
shielded from many of the complexities of developing self*
behaviour. They do not need to code adaptation behaviour, nor do
they need to write reconfiguration policies. Instead, the use of
models as first class entities raises the level of abstraction.
Illustrations and examples of the modeling tools will be described
in the service discovery and network overlay case studies in the
next section.

4. EVALUATION

4.1 Service Discovery Case Study
In pervasive applications there is no prior knowledge of what
resources are available in the environment or what method should
be used to communicate with them, hence discovering the
appropriate services in these environments is challenging. Many

service discovery protocols have emerged to solve this problem,
with heterogeneous solutions in each environment type; for
example, discovery protocols for fixed infrastructure networks
e.g. SLP, UPnP and Jini; and discovery protocols for ad-hoc
networks e.g. ALLIA [8], GSD [9] and SSD [10]. The goal of this
case study is to illustrate how the Gridkit self* approach supports
the developer in creating a discovery framework that can operate
in heterogeneous environments, and dynamically adapt it
behaviour to changing conditions.

To advertise and discover services, a discovery platform
utilizes: i) a User Agent (UA) to discover services on behalf of
clients, ii) a Service Agent (SA) to represent and advertise
services, and iii) a Directory Agent (DA) to support a service
directory where SAs register their local services and UAs send
their service request. Hence, a DA is capable of storing temporal
service advertisements, matching requested services against
advertisements stored in the cache and replying to requesting
clients when a positive match is found.

4.1.1 Software Architecture Patterns
Figure 8 illustrates the core component pattern designed by a
domain expert to be used in development of all discovery
protocols within the framework. The advertiser component: i)
broadcasts advertisement messages, ii) maintains a service
directory overlay (dependent on the protocol, and iii) manages
cached data. The request component constructs and sends request
messages. The reply component constructs and sends response
messages. The network component handles routing of messages
(this can be replaced by the Gridkit overlay framework). The
policy component enforces user preferences, application needs
and/or inclusive context requirements. Finally, the cache
component stores messages and advertisements for later use by
the protocol. More details about the requirements and behaviour
capture of this pattern are described in [11].

Figure 8. The Service Discovery Framework Pattern

Moreover, further architecture patterns were designed to support
individual discovery agent personalities on any implemented
discovery platform. Figure 9 demonstrates how the framework
can be configured to support either a SA or UA personality by
restricting the number of components to only those required to
provide a determined functionality.

Domain experts then developed the components (to match
the architecture pattern) for four discovery protocols: SLP,

ALLIA, GSD and SSD. Three of the component types are
common to all protocols, hence, only three (advertiser, request
and reply) need to be implemented for each protocol. This is
illustrated in figure 8; the four protocols are configured side-by-
side and share the common components. Hence, the pattern
promotes re-usability across configurations and reduces the
implementation task.

a) SA framework configuration

b) UA framework configuration

Figure 9. Service Discovery Agent Patterns

4.1.2 Transition Models
Within the domain of service discovery there are many
opportunities to perform self adaptation (in particular these are
node-local adaptations, performed only on an individual
participant in the discovery protocol):

o Heterogeneity change e.g. a device moving from a fixed
network to a wireless ad-hoc network requires one protocol
to be replaced by another e.g. SLP replaced by ALLIA.

o Role change e.g. if the system size increases (for scalability
reasons) reconfigure the SA configuration to DA.

o the use of a different role strategy to save energy e.g. If a
node DA has low battery and it was originally a node with
the role SA, the node should be reconfigured to its original
SA configuration to reduce its processing.

To design and implement such reconfigurations, the domain
engineer creates transition models that describe how one of the
patterns from 4.1.1 is transformed to another pattern (e.g. UA to
DA). To do this, an adaptation is defined as the process of having
the system going from a given configuration Ci to another
configuration Cj given the conditions of the context Tk. This is
modelled using transition diagrams. A screenshot of the Genie
tool that is used to specify these is shown in figure 10. An
adaptation policy is associated with the relationship (arc) between
the configuration for the variant UA (Ci) and the configuration for
DA (Cj) for a given context Tk specified by the policy. Hence, for
each arc an XML reconfiguration rule is generated that is
understood by the Gridkit framework.

An example reconfiguration rule (described in pseudocode
rather than XML to conserve space) is:

if (RSA) then

reconfigure(UA,SA)

end

Based upon the requirement for the protocol to now advertise
services (RSA context) and the current configuration is UA, it
transforms from UA to SA. The framework will take the
information from the rule and use a series of reflective operations
to determine what the configuration is (protocol type, and to
verify it is UA) and then performs node-local adaptation via meta-
operations to create the SA configuration.

Figure 10. Transition Model for Service Discovery in the
Genie Tool

4.1.3 Analysis
The original hypothesis of this case study was that the Gridkit
self* approach supported the developer in overcoming the
challenges of heterogeneity and the need for dynamic adaptation.
Here, we discuss the two dimensions of self-configuration and
self-adaptation. We also investigate the costs of this approach.

Configurability. Heterogeneous discovery platforms are
implemented to a common pattern. This simplifies the
configuration process since the component types and connection
bindings remain the same for any protocol implementation.
Hence, based upon the operating conditions, it is straightforward
to configure the appropriate protocol; this shields developers and
users from the complexities of heterogeneity. Further, configuring
minimal agent personalities brings benefits; for instance, when a
discovery protocol with a structured distributed directory
architecture is utilized many nodes will only need to discover
services, and a UA configuration can be employed. Hence, by
configuring individual protocols according to the role (UA, SA or
DA), the resources required can be reduced.

Reconfigurability. The modeling of reconfigurations hides
many of the complexities of developing adaptive software. Indeed
these can be designed and employed at runtime after the protocols
have been deployed; this is because Gridkit frameworks provide a
strong separation between the implementation of the protocol and
the mechanisms for adaptation. To tackle context change in
heterogeneous environments, fine-grained and coarse-grained
changes can be made. The complete protocol can be changed if it
no longer functions in the environment; and finer-grained role
changes can to respond to environmental context or application
requirement changes.

Resource Overhead. To analyze the overhead of our
framework we measured the size of the Java classes (that made up

the component configurations) as loaded into memory. These
measures are illustrated in table 1; these figures show the cost of
each individual protocol in the framework. Then we measured the
cost when multiple protocols are configured. We compared these
measures against the side-by-side measurement of individual
protocols (not configured in the framework). It can be seen that
resource usage is reduced (due to component re-use from the
pattern properties), and that the overhead of a multiple protocol
personality is not restrictive for resource-poor devices. Hence,
tackling heterogeneity does not come with prohibitive costs.

Table 1. Memory overheads of discovery framework

4.2 Network Overlays Case Study
As well as needing to run effectively over an ever-increasing
range of networking technologies (e.g. large-scale fixed networks,
mobile ad-hoc networks, resource impoverished sensor networks,
satellite links, etc), distributed applications are increasingly
demanding sophisticated and application-tailored services from
the underlying network (e.g. multimedia content distribution,
reliable multicast, etc.) Network overlays provide an approach to
the virtualisation of the underlying network resource(s), making it
possible to provide a range of different networking abstractions
including peer-to-peer groups, distributed hash tables,
application-level multicast, etc.

In this case study we describe the development of the open
overlays framework. The goal is to demonstrate the benefits
provided by Gridkit frameworks in creating a configurable and
reconfigurable framework that supports (flexible) virtualization of
the network resource, the co-existence of multiple (physical or)
virtual networking abstractions, and potentially support the
layering of virtual network abstractions to address the challenges
of heterogeneous network environments.

4.2.1 Software Architecture Patterns
Figure 11 illustrates the general patterns for overlays defined by
domain experts. This is a two-level architecture:

i) Overlay plug-ins are per-node implementations of network
overlays. For example, Figure 11 shows four overlay plug-
ins: TBCP, Scribe, and plug-ins for a Chord Distributed
Hash Table (DHT) and a Chord Key-Based Routing (KBR)
overlay. Multiple overlays can operate simultaneously in
the framework either in mutual isolation (cf. TBCP and
Scribe) or in a stacking relationship (e.g. Scribe and Chord
DHT are both stacked atop Chord KBR).

ii) The overlay pattern. Overlay plug-ins are themselves ‘mini’
frameworks composed of three distinct elements that
respectively encapsulate the following areas of behaviour: i)
control behaviour, in which the node co-operates with its

peer control element on other nodes to build and maintain
an overlay-specific virtual network topology; ii) forwarding
behaviour that determines how the overlay will route
messages over the aforementioned virtual topology; iii)
state information that is maintained for the overlay; e.g.
nearest neighbours.

Figure 11. An example configuration of the open overlays
framework

Hence, the framework can be instantiated with many possible
configurations to meet wide variation in heterogeneous conditions
e.g. if multicast is required in an ad-hoc network, then an
appropriate overlay is selected (e.g. gossip-based).

4.2.2 Transition Models
The overlay pattern was designed by the domain engineers to
facilitate the complex process of adapting network overlay
behaviour e.g. the state component maintains the distributed state
model (and hence this does not need to be transferred to new
components). The topology of the network can then be changed
by performing a distributed adaptation of control components on
each host, or similarly the routing behaviour component can be
altered by adapting the forwarder component on each host. Hence,
the transition models are straightforward manipulations of the
overlay pattern; figure 12 illustrates one example of a control
component change. Here, a multicast overlay for resource poor
nodes in a fixed wireless network is adapted; the SP box
represents a shortest path spanning tree overlay plug-in; FH
represents a fewest hop spanning tree configuration. They differ
only in their control component.

A fewest hop tree is more resilient to node failure; hence, if
the failure rates of nodes in the network increases then the
shortest path tree (whose behaviour is severely affected by
failure) topology is changed to a fewest hop tree topology.
However, a shortest path tree consumes less power, hence when
there is minimal failure and power is low then the network
reverses. In the model, the designer states the transition, context
event and also the style of adaptation; in this case the centralized
co-ordination framework is selected to place the network in a safe
state and ensure that the adaptation is coordinated. The model is
used to generate XML policies that inform distributed adaptation.

4.2.3 Analysis
Ease of use. The overlay patterns have been used by 15
programmers, from a range of institutions, with different levels of
programming experience, in a number of system development

projects (e.g., projects developing middleware for sensor
networks, resource discovery, and publish-subscribe) to develop
overlays. From observation and discussion we were able to draw
conclusions about the ease with which the approach helped
develop adaptive software. Plug-in developers generally
understood and followed the approach implied by the overlay
pattern, and to this extent their solutions were easily deployable,
configurable and adaptable. A typical overlay plug-in is
developed in a time frame of 2 to 8 weeks depending on the
complexity of the overlay. Framework users found it relatively
easy to apply the existing profiles of the framework. Hence,
despite the fact that the evidence is primarily anecdotal, and that
there are areas of possible improvement, we believe that it is
reasonably safe to conclude that third parties can follow the
approach with relative ease.

Figure 12. Topology Adaptation of an Overlay Network

Configurability. To measure the extent of the configurability
of the framework we calculated the numbers of possible
configurations in each of three profiles (i.e. an ‘empty’ profile
consisting of only the framework itself, a ‘multicast’ profile for
multicast overlays, and a ‘full’ profile containing all of the
networks we have developed so far). The numbers, which are
summarised in the rightmost column of Table 2, result from an
exhaustive enumeration of all the configurations. The results
show that the more complex and well-populated profiles support a
very large number of possible configurations; e.g. the ‘full’
profile has 26,999; this does not mean that programmers must
write 27,000 rules, rather the approximately 30 patterns for the
full profile combine to offer many potential configurations; that is
the framework self-configures horizontal and vertically to create
these combinations.

Table 2. Configurability and overhead results

Profile No.
plug-
ins

No.
config.
rules

Disk mem.
for config.
rules (KB)

Disk mem
for plug-
ins (KB)

Total No. of
configs
available

Empty 0 0 0 60 1

Multicast 21 19 59 169 89

Full 40 31 87 252 26,999

State SP Control Forward

SP FH

Failure_rate=High

Centralised Co-ordination
Framework FH

 Control

(Power=Low)&&(Failure_rate=Low)

Furthermore, the overlay pattern contributes significantly to the
configurability of the framework by supporting fine-grained
configuration of individual overlays. Consider, for example, a
Gnutella implementation with either a random-walk-based, or a
flooding-based forwarder; or a tree overlay with a control element
that either contains or doesn’t contain a self-repair algorithm. This
applies equally when the overlay pattern is decomposed.

Resource overhead To assess the price paid for the use of
software architecture, we quantified the resource overhead
incurred by the open overlays framework in three experiments.
All of these employed components from Gridkit 1.5/ OpenCOM
v1.3.5 (available from http://gridkit.sourceforge.net), executing
on a Java 1.5.0.10 virtual machine on a networked workstation
with a 3.0 GHz Pentium 4 processor, 1 Gbyte of RAM and
running Windows XP. The experiment (see Table 2) investigated
the static storage footprint costs of each profile; i.e. the disk space
required to store the framework, components and configuration
rules. This measure is important as it illustrates the cost of storing
not only a starting configuration but also any reconfigurations that
may subsequently be applied. It can be seen from Table 2 that the
base framework requires 60K before any plug-ins are added. Note
that the configuration rules take a lot of storage (usually at least
2KBytes) because they are coded in XML.

5. RELATED WORK
There are a number of related areas of research to this work.

These consist of software engineering approaches to self*
software, reflective component models, reflective middleware,
and alternative approaches to distributed adaptation of network
protocols and middleware. We now analyse these in turn,
examining how they differ from our approach.

Reflective middlewares and component models, e.g. Fractal
[12], OpenORB [13] and DynamicTAO [14] came to prominence
in the past decade. Generally these provide the infrastructure to
adapt; typically node-local adaptation according to a local policy.
Although potentially suitable for supporting some classes of self-
managed systems, the dimensions of co-ordinated, distributed
adaptations have not been addressed; therefore, we believe
Gridkit promotes improved support for a wider range of systems
e.g. SoS and decentralized classes of self-managed systems.

One alternative component approach that has investigated
the coordinated reconfiguration of decentralized, self-managed
systems is k-Components [15]. Here, a k-Component is a
component with local architecture and a reflective meta protocol
to inspect and adapt this architecture. Each k-Component is then
related to a management agent; this is responsible for monitoring
the environment and making decisions about when to adapt the
component structure. In the co-ordination dimension, distributed
agents can communicate with one another, although decisions to
adapt are made locally. Hence, the approach is suited to only
decentralized reconfigurations, with no guarantee that behaviour
is changed across a system. Our approach, is in general more
flexible allowing the mechanism for co-ordinated adaptation to be
tailored to the requirements e.g. centralized or decentralized.

NecoMan [16] offers an alternative approach to dynamic
reconfiguration, whose capabilities have inspired many of the
features of our approach. It supports safe, co-ordinated updates of
distributed services, typically related to network protocols.
However, it has not yet been applied in diverse application

environments to illustrate its full flexibility; however, we believe
it presents many interesting mechanisms that could be applied
within our frameworks; especially our points of flexibility in
terms of consensus and quiescence. The NecoMan approach has
been extended to also manage aspect compositions (rather than
components); DyRES [17] provides flexible algorithms to ensure
that aspects are safely adapted in a co-ordinated manner.

Silva et al. [18] present a framework to support the automatic
self-adaptation of distributed application components. Our
approach follows some of their key ideas: monitoring the current
system state, supporting flexible algorithms for diverse
conditions, and using the configurator pattern. Our approach
differs by targeting frameworks of self-managing middleware
elements, as opposed to application components. In addition, we
consider an architectural view of distributed frameworks, with
principled reflection mechanisms to further support adaptation
decisions. Hence, self-adaptation can be applied on demand at
different levels of the distributed system, from the network
protocols, to the communication middleware, to the applications.

A common theme of related work in self* systems is that
they provide the mechanisms to perform adaptation; however,
they do not provide the developer with additional software
engineering methodologies to deal with the inevitable
complexities that follow. This is now identified as a key problem;
indeed three seminal papers [19][20][21] call for new engineering
approaches in this field and from the middleware community. We
believe that the work in this paper provides initial solutions to
overcome a subset of the identified issues, especially in providing
solutions to complex adaptations.

In terms of model-based approaches, MUSIC [22] presents a
modelling framework for the specification and management of
dynamically adaptive systems. Essentially, this offers a different
configurator pattern where adaptations are made to ensure a utility
function is achieved. Our approach is complementary, and it
would be fruitful to investigate the use of this pattern within our
flexible frameworks. MADAM [23] presents a modelling
approach conceptually similar to our approach; whereby
component configurations and transitions are modelled. However,
by capturing domain expertise and adding it to models, we believe
systems are in a better position to handle the problems of SoS.

6. CONCLUSIONS AND FUTURE WORK
In this paper we have presented the challenges that are faced by
the developers of self* software: extreme heterogeneity and
dynamic change. We described the Gridkit self* approach; this is
composed of the Gridkit middleware framework which offers the
developers a flexible set of software tools for performing node-
local and distributed adaptation, underpinned by principled
reflective mechanisms. Combined with this, we suggest a domain
engineering approach to design and build individual middleware
functionality; the use of architecture and transition models
provides suitable abstractions to supports developers create
configurable and reconfigurable systems. Case studies illustrate
the strong benefits of utilizing software patterns and domain
expertise to implement self-adapting middleware. It can be seen
that the developed service discovery and overlay frameworks are
highly configurable and can therefore respond to the challenges of
heterogeneity; the ability to adapt is considered throughout the
development lifecycle. Using domain expertise, complex
adaptations can be rapidly developed and in many cases re-used.

We see future work in two key areas. Firstly, we do not
currently consider verification and validation of configurations
and adaptations. Here we envisage the use of modeling tools and
simulators that allow developers to test and pre-validate
reconfigurations before they are deployed. Secondly, it is likely
that in complex systems emergent behaviour will be observed;
hence we plan to investigate this behaviour further and extend our
engineering philosophy to cope with such problems.

7. ACKNOWLEDGMENTS
Our thanks to the ESF and Minema for funding contributions to
this work. Gridkit has involved many; therefore the authors would
also like to thank: Geoff Coulson, Francois Taiani, Barry Porter,
Danny Hughes, Phil Greenwood, Chris Cooper, David Duce, Wei
Cai, Musbah Sagar, Jason Li and Gareth Tyson for their input.

8. REFERENCES
[1] A. P. Sage, C. D. Cuppan, “On the Systems Engineering and

Management of Systems of Systems and Federations of
Systems”, Information, Knowledge, Systems Management
2(4): 325-345, 2001.

[2] G. Blair, G. Coulson, L. Blair, H. Duran-Limon, P. Grace, R.
Moreira, N. Parlavantzas. “Reflection, Self-Awareness and
Self-Healing”, In Proceedings of Workshop on Self-Healing
Systems '02, Charleston, SC, November 2002.

[3] P. Grace, D. Hughes, B. Porter, G. Blair, G. Coulson, F.
Taiani, “Experiences with Open Overlays: A Middleware
Approach to Network Heterogeneity”, In Proceedings of the
3rd ACM International EuroSys Conference '08, Glasgow,
Scotland, April 2008.

[4] P. Grace, G. Coulson, G. Blair, B. Porter, “Deep Middleware
for the Divergent Grid”, Proceedings of the 6th
IFIP/ACM/USENIX International Middleware Conference
2005, Grenoble, France, November 2005.

[5] C. Szyperski, “Component Software, Beyond Object-
Oriented Programming”, ACM Press/Addison-Wesley, 1998.

[6] F. Kon, “Automatic Configuration of Component-Based
Distributed Systems”. PhD Thesis. University of Illinois at
Urbana-Champaign, May, 2000.

[7] N. Bencomo, P. Grace, C. Flores, D. Hughes, G. Blair,
“Genie: Supporting the Model Driven Development of
Reflective, Component-based Adaptive Systems”, Formal
Research Demonstration, In Proceeding of the 30th
International Conference on Software Engineering (ICSE
2008), Leipzig, Germany, May 2008.

[8] O. Ratsimor, D. Chakraborty, A. Joshi, T. Finin, “Allia:
Alliance-based Service Discovery for Ad-Hoc
Environments”, In ACM Mobile Commerce Workshop, pp. 1
– 9, Atlanta, Georgia, USA, 2002.

[9] D. Chakraborty, A. Joshi, Y. Yesha, T. Finin, “GSD: A
Novel Group-based Service Discovery Protocol for
MANETS”, In 4th IEEE Conference on Mobile and Wireless
Communications Networks, Stockholm, Sweden, 2002.

[10] F. Sailhan, V. Issarny, “Scalable Service Discovery For
MANET”, In Proceedings of the Third IEEE International
Conference on Pervasive Computing and Communications,
pp. 235 – 244, Washington, DC, USA, 2005.

[11] C. Flores Cortes, G. Blair, P. Grace, “An Adaptive
Middleware to Overcome Service Discovery Heterogeneity
in Mobile Ad Hoc Environments”, IEEE Distributed Systems
Online, July 2007.

[12] E. Bruneton, T. Coupaye, J. B. Stefani, “Recursive and
dynamic software composition with sharing”, In Proceedings
of the 7th ECOOP International Workshop on Component-
Oriented Programming, Malaga, Spain, June 2002.

[13] G. S. Blair, G. Coulson, A. Andersen, L. Blair, M. Clarke, F.
Costa, H. Duran-Limon, T. Fitzpatrick, L. Johnston, R.
Moreira, N. Parlavantzas, K. Saikoski, “The Design and
Implementation of OpenORB v2”, IEEE DS Online, Special
Issue on Reflective Middleware, Vol. 2, No. 6, 2001.

[14] F. Kon, “Automatic Configuration of Component-Based
Distributed Systems”, PhD Thesis, University of Illinois at
Urbana-Champaign, May, 2000.

[15] J. Dowling, “The Decentralised Coordination of Self-
Adaptive Components for Autonomic Distributed Systems”,
PhD Thesis, Trinity College, Dublin, 2004.

[16] N. Janssens, S. Michiels, T. Holvoet, R. Verbaeten,
“NeCoMan: Middleware for Safe Distributed Service
Deployment in Programmable Networks”, In Proceedings of
Middleware 2004, Toronto, Canada, 2004.

[17] E. Truyen, N. Janssens, F. Sanen, W. Joosen, “Support for
Distributed Adaptations in Aspect-Oriented Middleware”, In
Proceedings of the 7th International Conference on Aspect-
Oriented Software Development (AOSD 2008), 2008.

[18] J. Silva, M. Endler, F. Kon, “Developing Adaptive
Distributed Applications: a Framework Overview and
Experimental Results”, Proceedings of the International
Symposium on Distributed Objects and Applications (DOA),
LNCS 2888, pp.1275-1291. Catania, Sicily, Italy, November,
2003.

[19] V. Issarny, M. Caporuscio, N. Georgantas, “A Perspective on
the Future of Middleware-based Software Engineering”, In
Future of Software Engineering 2007 (FOSE) at ICSE
(International Conference on Software Engineering),
Minneapolis, MN, May 2007.

[20] J. Kramer and J. Magee, “Self-Managed Systems: an
Architectural Challenge”, In Future of Software Engineering
2007 (FOSE) at ICSE (International Conference on Software
Engineering), Minneapolis, MN, May 2007.

[21] P. Oreizy, N. Medvidovic, R. Taylor, “Runtime software
adaptation: framework, approaches, and styles”, In 30th
International Conference on Software Engineering, Leipzig,
Germany, May 2008.

[22] R. Rouvoy, F. Eliassen, J. Floch, S. Hallsteinsen, E. Stav,
“Composing Components and Services using a Planning-
based Adaptation Middleware”, In 7th International
Symposium on Software Composition, pp. 52–67, Budapest,
Hungary, March 2008.

[23] K. Geihs, M. U. Khan, R. Reichle, A. Solberg, S.
Hallsteinsen, S. Merral, “Modeling of component-based
adaptive distributed applications”, In Proceedings of the
ACM Symposium on Applied Computing, Dijon, France,
April 2006.

