
Genie: Supporting the Model Driven Development of
Reflective, Component-based Adaptive Systems

Nelly Bencomo, Paul Grace, Carlos Flores, Danny Hughes, Gordon Blair
Computing Department, InfoLab21, Lancaster University, LA1 4WA, United Kingdom

{nelly,gracep,floresco,danny,gordon}@comp.lancs.ac.uk

ABSTRACT
Engineering adaptive software is an increasingly complex
task. Here, we demonstrate Genie, a tool that supports
the modelling, generation, and operation of highly reconfig-
urable, component-based systems. We showcase how Genie
is used in two case-studies: i) the development and opera-
tion of an adaptive flood warning system, and ii) a service
discovery application. In this context, adaptation is enabled
by the Gridkit reflective middleware platform.

Categories and Subject Descriptors
D.2.10 [Software Engineering]: Design; D.2.13 [Software
Engineering]: Reusable Software—Domain Engineering,
Reuse models

General Terms
Design

Keywords
Model-driven Engineering, Reflective Middleware, Dynamic
Variability, Software Generation

1. INTRODUCTION
It is becoming common that systems are required to dy-

namically reconfigure and adapt according to context fluc-
tuations during runtime. One approach to handling this re-
quirement is to augment systems with intrinsic component-
based, reflective, and adaptive capabilities. An example of
this is reflective middleware [8], which supports the opera-
tion of distributed systems in fluctuating environmental con-
ditions; the middleware can be configured to operate in dif-
ferent domains, and adapted to react to fluctuating environ-
mental conditions. Such middleware is typically constructed
using components and the associated concept of component
frameworks to provide extendable structure and function-
ality; while reflection underpins dynamic configuration and
extensibility for runtime evolution and adaptation.

However, the added flexibility and adaptation capabilities
contribute to making the development and operation of such
systems increasingly complex. Developers must deal with a
large number of variability decisions when planning the con-
figurations, reconfigurations and adaptations. These include

Copyright is held by the author/owner(s).
ICSE’08, May 10–18, 2008, Leipzig, Germany.
ACM 978-1-60558-079-1/08/05.

decisions such as what components are required, and how
these components must be configured according to variations
in the environment and context. The above leads to a situa-
tion where variability management is an important concern.
Variability management means that a systematic approach
to structure, implement and document the variability in a
software family should be realized in a repeatable manner.
Managing variability requires a scalable and consistent ap-
proach that exploits reuse independently from specific con-
texts, and avoids ad-hoc solutions. Furthermore, the highly
technical knowledge needed by developers requires them to
work at very low levels of abstraction. This creates a big
gap between the way domain experts, architects and pro-
grammers operate. Ad-hoc approaches do not offer formal
foundations for verification that the systems will offer the
required functionality.

Hence, we have developed an approach to address the chal-
lenges described above [1, 3, 11, 2]; this systematically pro-
motes software reuse and use of models as first class entities
to raise the level of abstraction beyond coding, by specifying
solutions using domain concepts. Moreover, the approach
offers a structured management of variability. In this pa-
per, we elaborate on the approach proposed and illustrate
its implementation, the Genie tool. Genie offers domain-
specific languages (DSLs) for the modelling and generation
of adaptive systems supported by the reflective middleware
platforms. Genie has been implemented using MetaEdit+
[9].

The reminder of this paper is structured as follows: in
Section 2 the reflective middleware philosophy and Gridkit
are introduced. Section 3 gives an overall description of
the approach implemented by Genie and describes the tool
Genie itself. Section 4 briefly describes the demonstration.
Section 5 concludes and discusses possible future extensions.

2. BACKGROUND
At Lancaster University, we have gained experience de-

veloping adaptive systems and middleware platforms using
component frameworks and reflective technologies [4]. Com-
ponent frameworks are management units for a set of com-
ponents that address a specific domain of concern and ac-
cept “plug-in” components that add or extend behaviour.
Examples of domains are routing algorithms (provided by
the spanning tree framework) and discovery services strate-
gies (provided by the resource discovery framework). Like
components these can be composed and connected to build a
suitable systems for a particular set of requirements. Reflec-
tive capabilities support introspection to observe and reason



about the state of the system to make decisions on architec-
tural reconfigurations. Adaptive behavior is defined by sets
of reconfiguration policies. These policies are of the form on-
event-do-actions and actions are architectural changes using
the component frameworks. A context engine receives rele-
vant environmental events that are employed to identify the
reconfiguration policy to be used.

During execution, the system will be dynamically recon-
figured from one structural variant to another according to
variations in the context or environment, see Figure 1. Com-
ponent frameworks offer the medium to provide structural
variability and the reconfiguration policy-based mechanisms
set the basis for dealing with environment or context vari-
ability. Structural variability and environment and context
variability are dimensions of dynamic variability (also called
runtime variability) and are further explained in [2]. Genie
allows the modelling and generation of software artefacts
that will be used by the system at start-up time and run-
time.

Figure 1: Dynamic Variability

Gridkit [6] is the embodiment of the reflective middleware-
based philosophy briefly presented above to provide support
for reconfiguration and adaptation. The case studies shown
in this demo, the flood warning system GridStix[7, 11] and
the service discovery application [2] are based on the Gridkit
platform.

3. THE GENIE TOOL

3.1 Approach supported by Genie
The model-based approach supported by Genie allows de-

velopers to make use of architectural concepts using levels of
abstraction beyond programming and provided by models.
The three different levels of abstractions promoted by the
approach are shown in Figure 2. The figure shows the arte-
facts that populate the layers which correspond to different
levels of abstraction (abstraction levels are raised from bot-
tom to top). Domain-specific modelling languages (DSLs for
short) are used for the construction of the models associated
with the structural and environment variability (at levels 2
and 3). Using these models and generative techniques, soft-
ware artefacts of level 1 are generated.

Level 1 at the bottom is populated by different software
artefacts like component source code, and files of configura-
tions of component frameworks and reconfiguration policies.

Level 2 corresponds to the models associated with compo-
nents and component frameworks (configurations). These
models provide visual representations of the component con-
figurations. At this level, the developer/architect is able
to reason about composition decisions, commonalities, and
variabilities at an architectural level. At level 3 the devel-
oper reasons in terms of structural variants and conditions
of the environment and context that trigger the reconfig-
urations. This level is populated by models of transition
diagrams.

Genie models will be explained using one of the case stud-
ies of the demo, GridStix [7]. GridStix is a grid-enabled
wireless sensor network for flood management that has been
deployed in prototype form on the flood plain of the River
Ribble in North Yorkshire, England. Level 3 of Figure 2
shows the transition diagram that guides the reconfiguration
and adaptation process of GridStix. Three possible states
were identified: Normal, Alert, and Emergency. Each state
of the graph can be seen as a variant of the system and is de-
scribed using two component frameworks, i.e. the Spanning
Tree and the Network component framework.

The Spanning Tree component framework, describes the
routing algorithm that has two possible variants: Shortest
Path(SP) and Fewest Hop(FH). The second one, the Overlay
component framework describes the type of network to be
used and offers two possible variants: BlueTooth(BT) and
WiFi. How different variants of these component frame-
works are chosen will depend on the variations of conditions
in the environment and context. This variation is speci-
fied using the triggers associated with the transitions in the
diagram (i.e. arches). Triggers of reconfiguration policies
are specified in the arches between states. The number of
transitions in the transition diagrams will depend on how
adaptable the system should be or is conceived.

According to the transition diagram, if the application is
operating as Normal, and the prediction model of GridStix
predicts an imminent flood (i.e. the FloodPredicted moni-
toring condition is true), the nodes adapt to the Emergency
state bypassing the Alert state. This adaptation is effected
by reconfiguring the Network to use WiFi instead of Blue-
Tooth, and the Spanning Tree to a Fewest Hop topology.

3.2 Domain Specific Languages in Genie
Essentially, Genie offers two DSLs for the design of mod-

els, named the OpenCOM DSL [1] and the Transition Di-
agrams DSL respectively. In essence these DSLs allow the
specification of the structural variability and the environ-
ment or context variability respectively:

The OpenCOM DSL allows the construction of models
for components and component frameworks (configurations)
that populate level 2. The modelling elements to be used are
generic architectural elements such as components, required
and offered interfaces, and bindings. The OpenCOM DSL
can be seen as an Architecture Description Language (ADL)
with generative capabilities.

The Transition Diagrams DSL allows the specification
(models) of adaptations of the form: from the configuration
Ci and on the set of conditions Tk, go to configuration Cj.
These models are in essence transition diagrams and popu-
late level 3. Each node in a transition diagram is considered
as a structural variant of the system. Structural variants
are “coarser grain” configurations than configurations asso-
ciated with individual component frameworks in the sense



Figure 2: Overview of the approach implemented by Genie

that they are described by a set (or n-tuple) of component
frameworks. Structural variants can be seen as configura-
tions of the set of component frameworks which are asso-
ciated with the problem domain. Thus, in the case study
GridStix, the problem domain identified requires structural
changes (in terms of reconfiguration) of the routing algo-
rithms and the networks interfaces to be used in the sensor
network. The component frameworks to be used in each
structural variant should represent concepts associated with
the overlays component framework, specifically the Span-
ning Tree and the Network framework. The 2-tuples asso-
ciated with the structural variants used in the case study
are (SP,BT ), (SP,WiFi), and (FH,WiFi). The system will
evolve over time according to the conditions of the environ-
ment specified in the arcs of the diagrams. The places where
the architecture can be changed and the consequences of the
changes will be driven by the transition diagrams.

3.3 Orthogonal Variability Models
To complement the approach described above, the orthog-

onal variability models proposed in [10] are used. An orthog-
onal variability model defines the variability of a system fam-
ily in a separate model. It relates the variability specified
to other software development models such as component
models in our case. Figure 3 shows the variability diagrams
used to model the variants in the case study. The three
structural variants, Normal, Alert, and Emergency are as-
sociated with the variation point VP:Flood App marked by
(a). Each state variant of the graph is described using two
component frameworks, i.e. the Spanning Tree and the Net-
work component framework as seen above. The Spanning
Tree and the Network component frameworks has variation
points associated themselves, marked by (b) and (c). The
variability models have been particularly useful when man-
aging the traceability relations between the structural vari-
ants of the transition diagrams (level 3) and the component
frameworks configurations (level 2). This traceability rela-

tionships are fundamental for the generation of policies.

Figure 3: Variability and Transition Diagrams

3.4 Artefacts Generated by Genie
It was explained above how the developer designs models

to specify the components, component frameworks and con-
figurations, structural variants and the transition diagrams
using the DSLs provided by Genie. Using generators that
traverse these models, different software artefacts of level 3
can be generated (see Figure 4):

- From the models specified using the OpenCOM DSL
components and configurations of components associated
with the component frameworks are generated. To ensure
consistency of the generated artefacts, the constraints spec-
ified by the models are used to validate the configurations
before any generation. The middleware platforms, in this
case Gridkit, allows newly generated components and com-
ponent configurations to be added during the execution of
the system.



Figure 4: Genie Models and Generated Artefacts

- Using the transition models specified, the reconfiguration
policies are generated. As in the case above, validation of
transition diagrams should be performed to avoid inconsis-
tencies. Gridkit allows the generated policies to be inserted
during execution. The newly added reconfiguration policies
are used as long as the “new” component(s) or component
configuration(s) that provide the match are also provided.

4. DEMONSTRATION
Using Genie, we will demonstrate two specific case studies:

an adaptive flood warning system, and a service discovery
application. Each demo mainly consists of four stages: (1) a
model of a component framework will be created and com-
ponents will be associated; (2) source code of components
and the XML configuration file will be generated; (3) a tran-
sition diagram will be created identifying the variants asso-
ciated and reconfiguration policies will be generated; and (4)
the application will be executed and some behaviour will be
tested to show how the reconfigurations follow the transi-
tion diagrams while the system is running. Intentionally,
some mistakes will be performed to show how the models
are validated before the generation is carried out.

In particular, the case study of the adaptive flood warning
system is a good example of a reconfigurable software archi-
tecture that can be dynamically updated. Therefore, we
will demonstrate how new components and reconfiguration
policies will be created and added during the execution of
the application to show how the reconfiguration and triggers
will correspond to the newly added reconfiguration policies.

5. CONCLUSIONS AND FUTURE WORK
We have presented Genie, a tool that offers DSLs for the

design of models of component configurations and transition
diagrams. These models describe the architecture of recon-
figurable applications and the conditions of the environment
and context that trigger the reconfiguration of the architec-
ture. The use of DSLs promotes high levels of abstraction
beyond code. Furthermore, the use of generative techniques
increases the levels of efficiency, automation, and scalability.
Genie has been validated by two substantial case studies.

Joint research work between researchers from Lancaster
and Michigan State Universities [11, 5] has explored how
transition diagram models in Genie can be traced from re-

quirements models in i*. As a result, the adaptation scenar-
ios and monitoring condition trade-offs at the requirements
level were traced to the policies defining Gridkit’s reconfig-
urations. We are exploring how to realize the automatic
generation of the triggers (and their types) in the transition
diagrams in Genie from the i* models. Our vision is to make
requirements drivers of the reconfiguration at runtime.

Validation and the detection of conflicts between policies
are needed to guarantee the correct generation of artefacts.
We are enhancing Genie with validation capabilities so it
can return a list of conflicts that need to be resolved.

6. REFERENCES
[1] N. Bencomo and G. Blair. Genie: a domain-specific

modeling tool for the generation of adaptive and
reflective middleware families. In 6th OOPSLA
Workshop on Domain-Specific Modeling, USA, 2006.

[2] N. Bencomo, G. Blair, and C. Flores. Reflective
component-based technologies to support dynamic
variability. In The Second International Workshop on
Variability Modelling of Software-intensive Systems
(VaMoS’08), 2008.

[3] N. Bencomo, P. Grace, and G. Blair. Models, runtime
reflective mechanisms and family-based systems to
support adaptation. In Workshop on MOdel Driven
Development for Middleware (MODDM), 2006.

[4] G. Coulson, G. Blair, P. Grace, A. Joolia, K. Lee,
J. Ueyama, and T. Sivaharan. A generic component
model for building systems software. ACM
Transactions on Computer Systems, February, 2008.

[5] H. J. Goldsby, P. Sawyer, N. Bencomo, D. Hughes,
and B. H. C. Cheng. Goal-based modeling of
dynamically adaptive system requirements. In 15th
IEEE International Conference on Engineering of
Computer-Based Systems (ICBS 2008), Ireland, 2008.

[6] P. Grace, G. Coulson, G. Blair, and B. Porter. Deep
middleware for the divergent grid. In
IFIP/ACM/USENIX Middleware, France, 2005.

[7] D. Hughes, P. Greenwood, G. Coulson, G. Blair,
F. Pappenberger, P. Smith, and K. Beven. Gridstix::
Supporting flood prediction using embedded hardware
and next generation grid middleware. In 4th
International Workshop on Mobile Distributed
Computing (MDC’06), Niagara Falls, USA, 2006.

[8] F. Kon, F. Costa, G. Blair, and R. Campbell. The
case for reflective middleware. Communications of the
ACM, 45(6):33–38, 2002.

[9] MetaCase. Domain-specific modeling with metaedit+.

[10] K. Pohl, G. Böckle, and F. v. d. Linden. Software
Product Line Engineering- Foundations, Principles,
and Techniques. Springer, 2005.

[11] P. Sawyer, N. Bencomo, P. Hughes, Danny andl Grace,
H. J. Goldsby, and B. H. C. Cheng. Visualizing the
analysis of dynamically adaptive systems using i* and
dsls. In REV’07: Second International Workshop on
Requirements Engineering Visualization, India, 2007.


