
Comparitive Study of Variability Management in
Software Product Lines and Runtime Adaptable Systems

Vander Alves, Daniel Schneider, Martin Becker
Fraunhofer IESE

Fraunhofer Platz 1, 67663 Kaiserslautern, Germany
<first name>.<last name>@iese.fraunhofer.de

Nelly Bencomo, Paul Grace
Computing department, InfoLab21, Lancaster University,

Lancaster, LA1 4WA, United Kingdom
{nelly, gracep}@comp.lancs.ac.uk

Abstract

Software Product Lines (SPL) and Runtime Adaptation
(RTA) have traditionally been distinct research areas ad-
dressing different problems and with different communities.
Despite the differences, there are also underlying common-
alities with synergies that are worth investigating in both
domains, potentially leading to more systematic variability
support in both domains. Accordingly, this paper analyses
commonality and differences of variability management be-
tween SPL and RTA and presents an initial discussion and
our perspective on the feasibility of integrating variability
management in both areas.

1. Introduction

Software Product Line (SPL) [15] and Runtime Adap-
tation (RTA) [35] have traditionally been distinct research
areas addressing different problems and with different com-
munities (e.g., SPLC and ICSR in the former area and Mid-
dleware in the latter). SPL deals with strategic reuse of
software artifacts in a specific domain so that shorter time-
to-market, lower costs, and higher quality are achieved.
In contrast to that, RTA aims for optimized service pro-
visioning, guaranteed properties, and failure compensation
in dynamic environments. To this end, RTA deals mostly
with dynamic flexibility so that structure and behaviour is
changed in order to dynamically adapt to changing condi-
tions at runtime.

Despite the differences, there are also underlying com-
monalities with synergies that are worth investigating across
both domains. For instance, in terms of commonalities,

both areas deal with adaptation of software artifacts: by
employing some variability mechanism applied at a specific
binding time, a given variant is instantiated for a particular
context. Accordingly, the research community has recently
begun to explore the synergies between these two research
areas.

On the one hand, motivated by the need of producing
software capable of adapting to fluctuations in user needs
and evolving resource constraints [27], SPL researchers
have started to investigate how to move the binding time
of variability towards runtime [4, 11, 33], also noticeable
in the research community with even specific venues, such
as the Dynamic Software Product Line (DSPL) workshop
at SPLC, currently in its second edition. On the other
hand, motivated by the need of more consolidated meth-
ods to systematically address runtime variability, RTA re-
searchers have started to investigate leveraging SPL tech-
niques [24, 14, 10].

Nevertheless, in either case, a refined and systematic
comparison between these two areas is still missing. Such
comparison could help to explore their synergy with cross-
fertilization that could lead to more systematic variability
support in both domains.

In this context, this paper presents two key contributions:

• it analyses commonality and differences of variabil-
ity management between SPL and RTA. We define
variability management as the handling of variant and
common artifacts during software lifecycle including
development for and with reuse. We choose variability
management because we see it as the common denom-
inator for exploring synergies between SPL and RTA;

• it presents an initial discussion and our perspective on



the feasibility of integrating variability management
SPL and RTA.

The remainder of this paper is structured as follows. Sec-
tions 2 and 3 briefly review conceptual models for variabil-
ity management in SPL and RTA. Next, Section 4 presents
comparison criteria and compares variability management
between SPL and RTA approaches. Section 5 then discusses
potential integration of SPL and RTA. Related work is con-
sidered in Section 6, and Section 7 offers concluding re-
marks.

2. Software Product Line Variability Manage-
ment

There are different approaches for describing SPL vari-
ability, for instance Orthogonal Variability Model [38] and
PuLSE’s meta-model [7]. In this work, we comply with
the latter, which has been applied in research and industrial
projects for years. In particular, Figure 1 depicts the con-
ceptual model for a SPL, with a focus on variability man-
agement. The figure is based on a simplified version of the
meta-model proposed by Muthig [36], highlighting some
parts of the instantiation process and the actors involved.

A SPL comprises a set of products and a SPL infras-
trucutre developed in a specific domain. The first are de-
veloped by the application engineer, whereas the latter are
developed by the domain engineer and are reused in more
than one product. The SPL infrastructure consists of SPL
assets, which in turn comprise a decision model and SPL
artifacts. A special kind of PLAsset is the PLArchitec-
ture, which represents the SPL reference architecture. SPL
artifacts are generic SPL artifacts, i.e., they embed varia-
tion points which have an associated binding time and can
be described according to a given mechanism. A decision
model represents variability in a SPL in terms of open de-
cisions and possible resolutions. In a decision model in-
stance, known as Product Model, all decisions are resolved,
which is used to instantiate a specific product from SPL ar-
tifacts [6].

A product consists of product artifacts in a given con-
text. A product artifact is an instance of SPL artifacts and
comprises Variants, which in turn are instances of variation
points after these have been resolved by the decision model
when the application engineer configures this model into the
product model.

Binding time refers to the time at which the decisions for
a variation point are bound [32]. Examples of binding time
are pre-compilation, compilation, linking, load, or runtime.
Traditionally, SPL has been used mostly without the latter
binding time. Therefore, in those cases, with instantiation
of the product, variability is bound and a specific running

application is obtained. Variation points and decision mod-
els then do not persist in the generated product.

Another artifact that does not persist in the generated
product is context. We adopt the general definition of con-
text proposed by Dey et al. [18]:“Context is any information
that can be used to characterize the situation of an entity.
An entity is a person, place, or object that is considered
relevant to the interaction between a user and an applica-
tion, including the user and the application themselves”.
For example, context can be language or regulations. Al-
though context is considered during domain analysis and is
used by the decision model, it is not explicitly integrated
into the instantiated product. Further, it is often not for-
mally represented; rather, it is usually informally available
to the domain and application engineers in non-computable
form [17].

Since variation points, decision models, and context usu-
ally do not exist in the instantiated SPL products, switching
from one product to another product is only possible at ear-
lier binding times. The corresponding transition then is not
from one variant to another, but from the design space to
a variant and requires direct intervention of the application
engineer.

3. Runtime Adaptation Variability Manage-
ment

The domain model for runtime adaptation showing the
concepts that are relevant to this paper is depicted in Fig-
ure 2. The domain model is based on our experience in de-
veloping Dynamically Adaptive Systems (DASs) in middle-
ware research [10, 26]. We define a DAS as a software sys-
tem with enabled runtime adaptation. Runtime adaptation
takes place according to context changes during execution.
Example of DASs we have developed at Lancaster Univer-
sity are the adaptive flood warning system deployed to mon-
itor the River Ribble in Yorkshire, England [30, 29, 10]; and
the service discovery application described in [16]. The fig-
ure serves as a conceptual model to help explain the descrip-
tion that follows.

A Reference Architecture addresses specific solution
Domains, such as routing algorithms, networking technolo-
gies, and service discovery. The Reference Architecture is
specified by the Domain Engineer. DAS will typically em-
ploy a number of System Variants, which are sets of Com-
ponent Configurations. Different component configurations
can result in different connection topologies (compositions)
as well as in different “internal” behaviour (parameters).
Dynamic adaptation is achieved via transitions between
Component Configuration variations over time; for exam-
ple, components being added, removed and replaced, as the
DAS adapts based upon environmental context changes. In
any case, every Component Configuration must conform to



Figure 1. Variability Management in Software Product Lines.

the Reference Architecture, which describes the structural
commonalities of a DAS that always hold.

In addition to models describing the configuration space
at runtime, we require means to identify situations when
to adapt and which configuration to choose. This is repre-
sented in Figure 2 by the transitions. A transition starts in
a previous system variant and ends in a next variant. Tran-
sitions occur due to Triggers. Triggers are specified by the
Application Engineer in terms of conditions of environment
and context. We distinguish between two different types of
approaches on how the best system variant can be deter-
mined [41]:

1. Rule-based approaches [10, 41, 43] usually have the
“Event-Condition-Action” (ECA) form and hence dis-
tinctly specify when to adapt and which variant to
choose. Such approaches are widely spread in the do-
mains of sensor computing, embedded systems, and
mobile computing. One reason is that such systems
need to rely on light-weight approaches due to the
inherent scarcity of resources (e.g., processing time,
power supply) and must be deterministic. The rule sets
are usually to be specified at design time. However,
rules can also be added during execution [10].

2. Goal-based approaches [28, 34, 39] equip the system
with goal evaluation functions in order to determine

the best system variant under current circumstances.
Neglecting available optimization strategies, the brute
force approach would determine and evaluate all cur-
rently valid system variants and choose the variant that
meets best the given goals. Thus, goal-based adapta-
tion can be more flexible than rule-based adaptation
and it is more likely that optimal configurations can be
identified, albeit at a higher resource usage.

In our work, reconfiguration policies take the form of
ECA rules. Actions are changes to component configu-
rations while events in the environment are notified by a
context manager. System Variants will change in response
to changes of Environment Variants. Environment Vari-
ants represent properties of the environment that provide
the context for the running system. Different values as-
sociated with these properties define the possible triggers
of the transitions. System Variants represent different con-
figurations permissible within the constraints of the DASs
Reference Architecture. Environment Variants are speci-
fied by Domain Engineers. The variation points associated
with the component configurations are specified using or-
thogonal variability models [38], which are not described
in Figure 2 but addressed elsewhere [10]. For the DAS to
operate in the context of any Environment Variant, it needs
to be configured as the appropriate System Variant.

In our specific case, the dynamic reconfiguration is per-



Figure 2. Variability Management in runtime adaptable system.

formed via the dynamic composition of components at run-
time. However, the methodology is equally applicable to
other runtime composition mechanisms, e.g., dynamic AOP.

In RTA, systems need to adapt to the prevailing situation
on their own. Therefore there needs to be runtime models
defining when and how to adapt. Further, there needs to be
a notion of context, as acceptable configurations strongly
depend upon the prevailing situation. We consider the fol-
lowing aspects as typical drivers for runtime adaptation:
changes in required functionality and Quality of Service
(QoS), including dependability, changes in the availability
of services and resources, and occurrence of failures.

4. Comparison of Variability Management be-
tween SPL and RTA

After briefly presenting conceptual models of variabil-
ity for SPL and RTA in Sections 2 and 3, respectively, we
now compare both domains. First, we present comparison
criteria (Section 4.1) and then perform the comparison (Sec-
tion 4.2). The result of the comparison is later discussed in
Section 5 for potential synergies.

4.1 Comparison Criteria

With the goal of identifying synergy points in variability
management between SPL and RTA, the comparison crite-
ria we use are based on previous work by Becker et al. [8]
and by McKinley et al. [35], both in the context of RTA, and
on the taxonomy proposed by Svahnberg et al. [40] in the
context of SPL. The criteria are as follows:

• Goal: addresses the goal(s) of variability. If there is
no goal or driver for variability, the rest of the criteria
are irrelevant. Goals are generally expressed as state-
ments over a variability driver. Some examples of vari-
ability drivers are the following: functionality, quality
(dependability), resources (e.g., CPU, memory, com-
munication, display, time, energy), context (e.g., reg-
ulation, culture, language). A goal, for instance, is to
improve dependability or optimize resource usage;

• Binding time: time when the variability decisions are
resolved, e.g., pre-compilation, compilation, linking,
load, or runtime;

• Mechanism: a software development technique that
is used to implement a variation point, e.g., para-
metric polymorphism, subtype polymorphism, design
patterns, aspects, conditional compilation, reflection,



selection of one among alternative implementations,
frames;

• Who: defines who resolves the variability decisions. It
can be the domain engineer, the application engineer,
the user, or the application itself;

• Variability Models: defines the models that have vari-
ation points or that control adaptation, e.g., decision
model, reference architecture, PLArtifact, reconfigu-
ration policies.

4.2 Comparison Results

According to the comparison criteria presented in the
previous section, Table 1 compares variability management
in RTA and SPL.

In terms of goals, although the fulfilment of functional
and non-functional requirements is common in both SPL
and RTA, SPL has primarily focused on providing fulfil-
ment of functional requirements, whereas RTA has mostly
focused on improving QoS while maintaining functional re-
quirements. However, recently there has been a trend for
SPL research to address QoS more closely [9, 22, 21, 24],
which still remains an open issue and thus an explicit sub-
mission topic in key venues, e.g., SPLC09 [1].

Binding time in SPL has traditionally been at pre-
compile, compile, and link time, whereas in RTA variability
has been achieved at load time when the system (or compo-
nent configuration) is first deployed and loaded into mem-
ory, and more commonly at runtime after the system has
begun executing. The earlier binding in SPL usually al-
lows for some static optimization and is thus usually more
suitable for resource constrained systems, whereas the late
binding time in RTA favours flexibility instead. Never-
theless, as mentioned previously, binding time in SPL has
started to shift also to runtime in the context of DSPLs. Ad-
ditionally, SPLs have also been built with flexible binding
times, i.e., variation points that can have different binding
times and binding times selected based on domain-specific
context [12].

SPL mechanisms include diverse mechanisms such as
conditional compilation, polymorphism, Aspect-Oriented
Programming (AOP), Frames, parameterization, for exam-
ple [3], and can be classified according to introduction
times, open for adding variant, collection of variants, bind-
ing times, and functionality for binding [40]. On the other
hand, at the core of all approaches to RTA adaptation is a
level of indirection for intercepting and redirecting interac-
tions among program entities [35]. Accordingly, key tech-
nologies are computational reflection, separation of con-
cerns, and component-based design. Examples of corre-
sponding techniques are Meta-Object Protocol (MOP) [31],

dynamic aspect weaving, wrappers, proxies, and architec-
tural patterns (such as the Decentralized Control reconfig-
uration pattern [25]). RTA mechanisms can be described
according to the taxonomy by McKinley et al. [35], which
highlights how, when, and where to compose adaptations.
Key technologies and techniques for RTA variability can
also be used for SPL variability, but in cases where run-
time binding time is not required this leads to suboptimal
resource usage, since variation points persist unnecessar-
ily. Nevertheless, not all SPL variability mechanism can
be used for addressing variability in RTA, e.g., conditional
compilation. Additionally, SPL mechanisms allow transi-
tions from PLArtifact to Product Artifact at early binding
time, whereas in RTA transitions occur from component
configuration to another component configuration at run-
time.

In SPL it is the application engineer who is responsi-
ble for resolving and implementing variability decisions.
This includes the instantiation of corresponding PLArti-
facts (with aid of the decision model), the development of
product-specific artifacts and their integration. The respon-
sible entity in RTA depends on the actual binding time. It
is an expert/user at load time and the system itself at run-
time. Consequently, the system requires means to perform
the role of the application engineer during runtime (and par-
tially so at load time), when, due to context changes, recon-
figuration is necessary so that a new variant is generated.
As mentioned in Section 3, the application engineer in RTA
only specifies the triggers, but does not actually perform the
adaptation. Instead, triggers themselves play this role.

In terms of variability models, SPL involves using
mechanisms to adapt PLArtifacts according to the decision
model, whereas RTA mechanisms adapt System Variants
according to the configuration models and the reconfigura-
tion policies. These variants are then an instance of the Ref-
erence Architecture. RTA variability models are inherently
available at runtime, thus requiring an explicit and computa-
tionally tangible representation of all such artifacts, whereas
variability SPL artifacts in general do not have a runtime
representation and are often expressed informally.

5. Analysis and Potential Synergy

Based on the comparison from the previous section, we
can now highlight some commonalities between SPL and
RTA variability management. This is essential to foster po-
tential synergy and cross-fertilization of best practices in
both research areas, which is feasible given the recent inter-
est in DSPLs [27].

As mentioned in Section 4.2, the distinction between
variability management goals of both areas has become
blurred. Since SPL now addresses QoS more commonly,
it could benefit from well-established techniques for guar-



Criteria SPL RTA
Goal Focus on functional requirements Focous on improving QoS while maintaining

functional requirements
Binding time Mostly Pre-process/Compile/Linking Load time/Runtime
Mechanism e.g., conditional compilation, polymorphism, e.g., MOP, dynamic aspect weaving,

AOP, Frames, parameterization wrappers, proxies
Who Application Engineer Expert/User, Application itself
Variability Models Decision Model, PLArtifact Reference archtecture, System Variant, Variability rules

Table 1. Comparison of Variability Management between SPL and RTA.

anteeing QoS at runtime that have been used in RTA. For
example, Adapt [23] is an open reflective system that in-
spects the current QoS and then uses MOPs to alter the be-
haviour of the system through component reconfiguration
if the required level of service is not maintained. Addi-
tionally, hybrid feature models, incorporating both func-
tionality and QoS have also been proposed, e.g., by Be-
navides [9, 22, 21]. Conversely, RTA can use models for
describing variability, such as enhanced versions of feature
models [33] suitable for dynamic reconfiguration. Never-
theless, in this latter, there is still the challenge of address-
ing QoS issues [33].

Runtime binding time is on the focus of current re-
search in SPL [33, 42, 4] and could leverage correspond-
ing mechanisms in RTA. Wolfinger et al. [42] demonstrate
the benefits of supporting runtime variability with a plug-in
platform for enterprise software. Automatic runtime adap-
tation and reconfiguration are achieved by using the knowl-
edge documented in variability models. Wolfinger et al.
use the runtime reconfiguration and adaptation mechanism
based on their own plug-in platform, which is implemented
on the .NET platform.

In addition to the focus on runtime binding time in SPL,
the transition itself towards runtime binding has also led
to interest in binding time flexibility, whereby a variation
point can be bound at different times [12, 19, 20]. The
motivation is to maximize reuse of PLArtifacts across a
larger variety of products. For instance, a middleware SPL
could target both resource-constrained devices and high-
end devices, and one variation point in this SPL could be
the choice of a specific security protocol. For resource-
constrained devices, small footprint size is more important
than the flexibility of binding the variation point at runtime
and thus the variation point is bound early with a specific
security protocol. On the other hand, for high-end devices
such flexibility is important and outweighs the incurred
overhead (e.g., memory, performance loss due to indirec-
tion) of runtime binding of that variation point and thus the
same variation point is bound at runtime depending on po-
tential security threats or communication/throughput goals.

Indeed, current research has proved the feasibility of imple-
menting binding time flexibility, by using design patterns to
make the variation points explicit and aspects to modularize
binding time-specific code [12].

Although the relevance of binding time is well acknowl-
edged [17], a concrete method for selection of the appropri-
ate one and related to specific mechanisms is still missing.
Such a method could leverage well-established practices in
SPL and RTA, thus helping to explore their synergies.

Bindig time flexibility has increased the importance of
models in RTA and SPL, e.g., DSPLs. For example, at ear-
lier binding time, it is also important to model context in
a more explicit and precise way, so that a decison about
binding time can be made. Although acknowledged by tra-
ditional Domain Analysis, this has been represented infor-
mally and implicitly by the domain engineer. Conversely,
in RTA, at later binding times, the decision model and con-
text are still needed to decide on adaptation. Accordingly,
for example, recent research also leverages the use of deci-
sion models at runtime [11]. Nevertheless, there remains the
challenge of improving reasoning over this model at run-
time. Conversely, the development of Reference Architec-
ture in RTA could benefit from well established Domain En-
gineering approaches in SPL. This will help to discipline the
process and leverage tested practices for building reusable
artifacts. In particular, modern SPL component-based de-
velopment processes such as Kobra [5] have features such
as hierarchy model composition and refinement, and these
could be enhanced with quality descriptions to be leveraged
in RTA, thus helping to tame complexity.

The commonality among some models between SPL and
RTA, the flexibility of binding time, and the blurredness of
goals suggest that a holistic development process, explor-
ing the synergies between SPL and RTA, would be bene-
ficial to both domains. Particularly from the viewpoint of
the RTA domain, there is still a general lack of appropriate
engineering approaches. Accordingly, Adler et al. [2] intro-
duced a classification with respect to the maturity of RTA
approaches in three different evolution stages. In the state
of the practice, adaptation is usually used implicitly, with-



out dedicated models at development time or even at run-
time (evolution stage 1). In the current state of the art some
approaches emerged which use distinct models for variabil-
ity and decision modelling (evolution stage 2). This natu-
rally helps coping with the high complexity of adaptive sys-
tems by making them manageable, i.e., by supporting the
modular and hierarchical definition of adaptation enabling
the model-based analysis, validation, and verification of dy-
namic adaptation. The existence of a dedicated methodol-
ogy enabling developers to systematically develop adaptive
systems is considered as a further evolution step (evolution
stage 3).

A holistic model-based engineering approach would nat-
urally also benefit from the whole range of typical gains
brought by model-driven engineering (MDE) approaches
(i.e. validation, verification, reuse, automation). As for any
other software engineering approach it is particularly pos-
sible to analyze and to predict the quality of the adaptation
behaviour to enable systematic control of the development
process. In our opinion, the combination of SPL and RTA
approaches could bear a significant step in this direction.
Further, the benefits of the combination would also include
more consistent handling of variability across the binding
timeline and leverage of modelling and analysis techniques
across both domains.

6. Related work

Indeed, describing potential synergy between variability
in SPL and RTA is not new. For instance, each system con-
figuration can be considered as a product in a SPL in which
the variability decisions necessary to instantiate the prod-
uct are made at run-time [25]. Cheng et al. [13] present
a roadmap for engineering Self-Adaptive Systems, where
they suggest that technologies like: model driven develop-
ment, AOP, and SPL might offer new opportunities in the
development of self-adaptive systems, and change the pro-
cesses by which these systems are developed. In contrast
to these works, we explore this synergy in the context of
our concrete experience in the SPL and DAS domains and
highlight some points that lead to further research.

Gokhale et al. [24] propose an initial approach for in-
tegrating Middleware with SPL, focusing on the use of
feature-oriented programming and model-driven develop-
ment tools for uncovering and exploring the algebraic struc-
ture of middleware and handling runtime issues such as QoS
and resource management. Classen et al. [14] identify lim-
itations in domain engineering in current SPL research and
propose a research roadmap for the integration of SPL and
RTA, based on the key concepts of context, binding time,
and dynamism. Similarly to these works, we highlight QoS
challenges and the role of models, in particular context and
decision model; in contrast, we additionally discuss chal-

lenges regarding binding time flexibility.
The availability of decision models at runtime is re-

garded as an essential property of the synergy between SPL
and RTA. Anastasopoulos et al. [4] investigate the benefits
of applying SPL in the context of the Ambient Assisted
Living domain [37], in which systems have to be highly
adaptive, proposing a roadmap for its use. As in our work,
they identify the need to focus on runtime variability and
to provide an execution environment that enables manage-
ment and automatic resolution of decision models at run-
time. Their work additionally proposes corresponding reali-
sation techniques and a component model. Cetina et al. [11]
propose a method for developing pervasive applications us-
ing SPL concepts and techniques. The decision model is
represented at runtime and queried during system reconfig-
uration in order to address new user goals. Differently, we
also identify challenges on achieving binding time flexibil-
ity.

7. Conclusion

We performed a comparative study of variability man-
agement between SPL and RTA with the aim of identify-
ing synergy points and cross-fertilization opportunities that
could lead to enhanced variability management in both do-
mains. Based upon meta models for each of the two do-
mains and a set of general classification criteria, we iden-
tified and discussed potential synergy points. From a SPL
point of view, potential synergies comprise the specifica-
tion and management of QoS and dependability properties,
a more systematic approach towards variable binding time,
and the formalization of context information and its relation
to product variants and their properties. From the perspec-
tive of RTA, well-established variability modelling in the
SPL domain promises to be a valuable basis for the defini-
tion of appropriate models at runtime as they are required in
adaptive systems. We believe that addressing these synergy
points would be best exploited by the definition of a holistic
model-based engineering approach, which we plan to refine
in future work.

Acknowledgements
The authors would like to thank Michalis Anastasopou-

los for providing valuable feedback.

References

[1] SPLC’09. Call for Participation. http://www.sei.
cmu.edu/splc2009/files/SPLC_2009_Call.
pdf. Last access, Nov. 2008.

[2] R. Adler, D. Schneider, and M. Trapp. Development of safe
and reliable embedded systems using dynamic adaptation.
In 1st Workshop on Model-driven Software Adaptation M-
ADAPT’07 at ECOOP 2007, pages 9–14, Berlin, 2007.

http://www.sei.cmu.edu/splc2009/files/SPLC_2009_Call.pdf
http://www.sei.cmu.edu/splc2009/files/SPLC_2009_Call.pdf
http://www.sei.cmu.edu/splc2009/files/SPLC_2009_Call.pdf


[3] M. Anastasopoulos and C. Gacek. Implementing product
line variabilities. In SSR ’01: Proceedings of the 2001 sym-
posium on Software reusability, pages 109–117, New York,
NY, USA, 2001. ACM.

[4] M. Anastasopoulos, T. Patzke, and M. Becker. Software
product line technology for ambient intelligence applica-
tions. In Proc. Net.ObjectDays, pages 179–195, 2005.

[5] C. Atkinson, J. Bayer, C. Bunse, E. Kamsties, O. Lait-
enberger, R. Laqua, D. Muthig, B. Paech, J. Wüst, and
J. Zettel. Component-based product line engineering with
UML. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2002.

[6] J. Bayer, O. Flege, and C. Gacek. Creating product line
architectures. In Third International Workshop on Software
Architectures for Product Families - IWSAPF-3, pages 197–
203, 2000.

[7] J. Bayer, O. Flege, P. Knauber, R. Laqua, D. Muthig,
K. Schmid, T. Widen, and J.-M. DeBaud. Pulse: a methodol-
ogy to develop software product lines. In SSR ’99: Proceed-
ings of the 1999 symposium on Software reusability, pages
122–131, New York, NY, USA, 1999. ACM.

[8] M. Becker, B. Decker, T. Patzke, and H. A. Syeda. Run-
time Adaptivity for AmI Systems - The Concept of Adaptivity.
IESE-Report; 091.05/E. 2005.

[9] D. Benavides, A. Ruiz-Cortés, and P. Trinidad. Automated
reasoning on feature models. LNCS, Advanced Informa-
tion Systems Engineering: 17th International Conference,
CAiSE 2005, 3520:491–503, 2005.

[10] N. Bencomo, P. Grace, C. Flores, D. Hughes, and G. Blair.
Genie: Supporting the model driven development of reflec-
tive, component-based adaptive systems. In ICSE 2008 -
Formal Research Demonstrations Track, 2008.

[11] C. Cetina, J. Fons, and V. Pelechano. Applying software
product lines to build autonomic pervasive systems. In
SPLC ’08: Proceedings of the 12th International on Soft-
ware Product Line Conference, pages 117–126. IEEE Com-
puter Society, 2008.

[12] V. Chakravarthy, J. Regehr, and E. Eide. Edicts: imple-
menting features with flexible binding times. In AOSD ’08:
Proceedings of the 7th international conference on Aspect-
oriented software development, pages 108–119, New York,
NY, USA, 2008. ACM.

[13] B. H. C. Cheng, R. de Lemos, H. Giese, P. Inverardi, and
J. Magee, editors. Software Engineering for Self-Adaptive
Systems, 13.1. - 18.1.2008, volume 08031 of Dagstuhl Sem-
inar Proceedings. IBFI, Schloss Dagstuhl, Germany, 2008.

[14] A. Classen, A. Hubaux, F. Saneny, E. Truyeny, J. Vallejos,
P. Costanza, W. D. Meuter, P. Heymans, and W. Joosen.
Modelling variability in self-adaptive systems: Towards a
research agenda. In Proc. of the 1st Workshop on Mod-
ularization, Composition, and Generative Techniques for
Product Line Engineering held as part of GPCE08, Octo-
ber 2008.

[15] P. Clements and L. Northrop. Software Product LinesPrac-
tices and Patterns. Addison-Wesley, Reading, MA, 2002.

[16] C. F. Cortes, G. Blair, and P. Grace. An adaptive middleware
to overcome service discovery heterogeneity in mobile ad
hoc environments. IEEE Distributed Systems Online, 2007.

[17] K. Czarnecki and U. Eisenecker. Generative Programming:
Methods, Tools, and Applications. Addison-Wesley, 2000.

[18] A. Dey, D. Salber, and G. Abowd. A conceptual framework
and a toolkit for supporting the rapid prototyping of context-
aware applications. Human-Computer Interaction 16 (2),
pages 97–166, 2001.

[19] E. Dolstra, G. Florijn, M. de Jonge, and E. Visser. Captur-
ing timeline variability with transparent configuration envi-
ronments. In Proc. of International Workshop on Software
Variability Management, 2003.

[20] E. Dolstra, G. Florijn, and E. Visser. Timeline variability:
The variability of binding time of variation points. In Proc.
of Workshop on Software Variability Management, 2003.

[21] P. Fernandes and C. Werner. Ubifex: Modeling context-
aware software product lines. In Proc. of 2nd International
Workshop on Dynamic Software Product Lines, 2008.

[22] P. Fernandes, C. Werner, and L. G. P. Murta. Feature mod-
eling for context-aware software product lines. In SEKE,
pages 758–763, 2008.

[23] T. Fitzpatrick, G. Blair, G. Coulson, N. Davies, and P. Robin.
Supporting adaptive multimedia applications through open
bindings. In CDS ’98: Proceedings of the International
Conference on Configurable Distributed Systems, page 128,
Washington, DC, USA, 1998. IEEE Computer Society.

[24] A. Gokhale, A. Dabholkar, and S. Tambe. Towards a holistic
approach for integrating middleware with software product
lines research. In Proc. of the 1st Workshop on Modulariza-
tion, Composition, and Generative Techniques for Product
Line Engineering held as part of GPCE08, October 2008.

[25] H. Gomaa and M. Hussein. Model-based software design
and adaptation. In SEAMS ’07: Proceedings of the 2007 In-
ternational Workshop on Software Engineering for Adaptive
and Self-Managing Systems, page 7, Washington, DC, USA,
2007. IEEE Computer Society.

[26] P. Grace, G. Blair, C. Flores, and N. Bencomo. Engineer-
ing complex adaptations in highly heterogeneous distributed
systems. In Invited paper at the 2nd International Con-
ference on Autonomic Computing and Communication Sys-
tems, September 2008.

[27] S. Hallsteinsen, M. Hinchey, S. Park, and K. Schmid. Dy-
namic software product lines. Computer, 41(4):93–95,
2008.

[28] S. Hallsteinsen, E. Stav, A. Solberg, and J. Floch. Us-
ing product line techniques to build adaptive systems. In
SPLC 2006: Proceedings of the 10th International Software
Product Line Conference, pages 141–150, Washington, DC,
USA, 2006. IEEE Computer Society.

[29] D. Hughes, P. Greenwood, G. Coulson, G. Blair, F. Pappen-
berger, P. Smith, and K. Beven. An experiment with reflec-
tive middleware to support grid-based flood monitoring. To
appear in Wiley Inter-Science Journal on Concurrency and
Computation: Practice and Experience.

[30] D. Hughes, P. Greenwood, G. Coulson, G. Blair, F. Pappen-
berger, P. Smith, and K. Beven. An intelligent and adaptable
flood monitoring and warning system. In Proc. of the 5th
UK E-Science All Hands Meeting (AHM06), 2006.

[31] G. Kiczales and J. D. Rivieres. The Art of the Metaobject
Protocol. MIT Press, Cambridge, MA, USA, 1991.



[32] C. W. Krueger. Product line binding times: What you don’t
know can hurt you. In SPLC, pages 305–306, 2004.

[33] J. Lee and K. C. Kang. A feature-oriented approach to devel-
oping dynamically reconfigurable products in product line
engineering. In SPLC ’06: Proceedings of the 10th Inter-
national on Software Product Line Conference, pages 131–
140, Washington, DC, USA, 2006. IEEE Computer Society.

[34] G. Lenzini, A. Tokmakoff, and J. Muskens. Managing trust-
worthiness in component-based embedded systems. Elec-
tron. Notes Theor. Comput. Sci., 179:143–155, 2007.

[35] P. K. McKinley, S. M. Sadjadi, E. P. Kasten, and B. H. C.
Cheng. Composing adaptive software. Computer, 37(7):56–
64, 2004.

[36] D. Muthig. A Lightweight Approach Facilitating an Evolu-
tionary Transition Towards Software Product Lines. Fraun-
hofer IRB Verlag, Stuttgart, 2002.

[37] J. Nehmer, M. Becker, A. Karshmer, and R. Lamm. Liv-
ing assistance systems: an ambient intelligence approach.
In ICSE ’06: Proceedings of the 28th international confer-
ence on Software engineering, pages 43–50, New York, NY,
USA, 2006. ACM.

[38] K. Pohl, G. Böckle, and F. J. van der Linden. Software Prod-
uct Line Engineering: Foundations, Principles and Tech-
niques. Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 2005.

[39] C. P. Shelton, P. Koopman, and W. Nace. A framework
for scalable analysis and design of system-wide graceful
degradation in distributed embedded systems. In Words
2003: Proceedings of the Eighth International Workshop
on Object-Oriented Real-Time Dependable Systems, pages
156–163, Washington, DC, USA, 2003. IEEE Computer So-
ciety.

[40] M. Svahnberg, J. van Gurp, and J. Bosch. A taxonomy of
variability realization techniques: Research articles. Softw.
Pract. Exper., 35(8):705–754, 2005.

[41] M. Trapp. Modeling the Adaptation Behavior of Adaptive
Embedded Systems. Verlag Dr. Hut, Munich, 2005.

[42] R. Wolfinger, S. Reiter, D. Dhungana, P. Grunbacher, and
H. Prahofer. Supporting runtime system adaptation through
product line engineering and plug-in techniques. In Seventh
International Conference on Composition-Based Software
Systems (ICCBSS 2008), pages 21 – 30, 2008.

[43] J. Zhang and B. H. C. Cheng. Model-based development of
dynamically adaptive software. In ICSE ’06: Proceedings of
the 28th international conference on Software engineering,
pages 371–380, New York, NY, USA, 2006. ACM.


	. Introduction
	. Software Product Line Variability Management
	. Runtime Adaptation Variability Management
	. Comparison of Variability Management between SPL and RTA
	Comparison Criteria
	Comparison Results

	. Analysis and Potential Synergy
	. Related work
	. Conclusion

